""" OpenSfM related utils """ import os, shutil, sys, json, argparse import yaml from opendm import io from opendm import log from opendm import system from opendm import context from opendm import camera from opensfm.large import metadataset from opensfm.large import tools from opensfm.commands import undistort class OSFMContext: def __init__(self, opensfm_project_path): self.opensfm_project_path = opensfm_project_path def run(self, command): system.run('/usr/bin/env python3 %s/bin/opensfm %s "%s"' % (context.opensfm_path, command, self.opensfm_project_path)) def is_reconstruction_done(self): tracks_file = os.path.join(self.opensfm_project_path, 'tracks.csv') reconstruction_file = os.path.join(self.opensfm_project_path, 'reconstruction.json') return io.file_exists(tracks_file) and io.file_exists(reconstruction_file) def reconstruct(self, rerun=False): tracks_file = os.path.join(self.opensfm_project_path, 'tracks.csv') reconstruction_file = os.path.join(self.opensfm_project_path, 'reconstruction.json') if not io.file_exists(tracks_file) or rerun: self.run('create_tracks') else: log.ODM_WARNING('Found a valid OpenSfM tracks file in: %s' % tracks_file) if not io.file_exists(reconstruction_file) or rerun: self.run('reconstruct') else: log.ODM_WARNING('Found a valid OpenSfM reconstruction file in: %s' % reconstruction_file) # Check that a reconstruction file has been created if not self.reconstructed(): log.ODM_ERROR("The program could not process this dataset using the current settings. " "Check that the images have enough overlap, " "that there are enough recognizable features " "and that the images are in focus. " "You could also try to increase the --min-num-features parameter." "The program will now exit.") exit(1) def setup(self, args, images_path, photos, reconstruction, append_config = [], rerun=False): """ Setup a OpenSfM project """ if rerun and io.dir_exists(self.opensfm_project_path): shutil.rmtree(self.opensfm_project_path) if not io.dir_exists(self.opensfm_project_path): system.mkdir_p(self.opensfm_project_path) list_path = io.join_paths(self.opensfm_project_path, 'image_list.txt') if not io.file_exists(list_path) or rerun: # create file list has_alt = True has_gps = False with open(list_path, 'w') as fout: for photo in photos: if not photo.altitude: has_alt = False if photo.latitude is not None and photo.longitude is not None: has_gps = True fout.write('%s\n' % io.join_paths(images_path, photo.filename)) # check for image_groups.txt (split-merge) image_groups_file = os.path.join(args.project_path, "image_groups.txt") if io.file_exists(image_groups_file): log.ODM_INFO("Copied image_groups.txt to OpenSfM directory") io.copy(image_groups_file, os.path.join(self.opensfm_project_path, "image_groups.txt")) # check for cameras if args.cameras: try: camera_overrides = camera.get_opensfm_camera_models(args.cameras) with open(os.path.join(self.opensfm_project_path, "camera_models_overrides.json"), 'w') as f: f.write(json.dumps(camera_overrides)) log.ODM_INFO("Wrote camera_models_overrides.json to OpenSfM directory") except Exception as e: log.ODM_WARNING("Cannot set camera_models_overrides.json: %s" % str(e)) use_bow = False feature_type = "SIFT" matcher_neighbors = args.matcher_neighbors if matcher_neighbors != 0 and reconstruction.multi_camera is not None: matcher_neighbors *= len(reconstruction.multi_camera) log.ODM_INFO("Increasing matcher neighbors to %s to accomodate multi-camera setup" % matcher_neighbors) log.ODM_INFO("Multi-camera setup, using BOW matching") use_bow = True # GPSDOP override if we have GPS accuracy information (such as RTK) override_gps_dop = 'gps_accuracy_is_set' in args for p in photos: if p.get_gps_dop() is not None: override_gps_dop = True break if override_gps_dop: if 'gps_accuracy_is_set' in args: log.ODM_INFO("Forcing GPS DOP to %s for all images" % args.gps_accuracy) else: log.ODM_INFO("Looks like we have RTK accuracy info for some photos. Good! We'll use it.") exif_overrides = {} for p in photos: dop = args.gps_accuracy if 'gps_accuracy_is_set' in args else p.get_gps_dop() if dop is not None and p.latitude is not None and p.longitude is not None: exif_overrides[p.filename] = { 'gps': { 'latitude': p.latitude, 'longitude': p.longitude, 'altitude': p.altitude if p.altitude is not None else 0, 'dop': dop, } } with open(os.path.join(self.opensfm_project_path, "exif_overrides.json"), 'w') as f: f.write(json.dumps(exif_overrides)) # Compute feature_process_size feature_process_size = 2048 # default if 'resize_to_is_set' in args: # Legacy log.ODM_WARNING("Legacy option --resize-to (this might be removed in a future version). Use --feature-quality instead.") feature_process_size = int(args.resize_to) else: feature_quality_scale = { 'ultra': 1, 'high': 0.5, 'medium': 0.25, 'low': 0.125, 'lowest': 0.0675, } # Find largest photo dimension max_dim = 0 for p in photos: if p.width is None: continue max_dim = max(max_dim, max(p.width, p.height)) if max_dim > 0: log.ODM_INFO("Maximum photo dimensions: %spx" % str(max_dim)) feature_process_size = int(max_dim * feature_quality_scale[args.feature_quality]) else: log.ODM_WARNING("Cannot compute max image dimensions, going with defaults") # create config file for OpenSfM config = [ "use_exif_size: no", "flann_algorithm: KDTREE", # more stable, faster than KMEANS "feature_process_size: %s" % feature_process_size, "feature_min_frames: %s" % args.min_num_features, "processes: %s" % args.max_concurrency, "matching_gps_neighbors: %s" % matcher_neighbors, "matching_gps_distance: %s" % args.matcher_distance, "depthmap_method: %s" % args.opensfm_depthmap_method, "depthmap_resolution: %s" % args.depthmap_resolution, "depthmap_min_patch_sd: %s" % args.opensfm_depthmap_min_patch_sd, "depthmap_min_consistent_views: %s" % args.opensfm_depthmap_min_consistent_views, "optimize_camera_parameters: %s" % ('no' if args.use_fixed_camera_params or args.cameras else 'yes'), "undistorted_image_format: tif", "bundle_outlier_filtering_type: AUTO", "align_orientation_prior: vertical", "triangulation_type: ROBUST", "bundle_common_position_constraints: %s" % ('no' if reconstruction.multi_camera is None else 'yes'), ] if args.camera_lens != 'auto': config.append("camera_projection_type: %s" % args.camera_lens.upper()) if not has_gps: log.ODM_INFO("No GPS information, using BOW matching") use_bow = True feature_type = args.feature_type.upper() if use_bow: config.append("matcher_type: WORDS") # Cannot use SIFT with BOW if feature_type == "SIFT": log.ODM_WARNING("Using BOW matching, will use HAHOG feature type, not SIFT") feature_type = "HAHOG" config.append("feature_type: %s" % feature_type) if has_alt: log.ODM_INFO("Altitude data detected, enabling it for GPS alignment") config.append("use_altitude_tag: yes") gcp_path = reconstruction.gcp.gcp_path if has_alt or gcp_path: config.append("align_method: auto") else: config.append("align_method: orientation_prior") if args.use_hybrid_bundle_adjustment: log.ODM_INFO("Enabling hybrid bundle adjustment") config.append("bundle_interval: 100") # Bundle after adding 'bundle_interval' cameras config.append("bundle_new_points_ratio: 1.2") # Bundle when (new points) / (bundled points) > bundle_new_points_ratio config.append("local_bundle_radius: 1") # Max image graph distance for images to be included in local bundle adjustment else: config.append("local_bundle_radius: 0") if gcp_path: config.append("bundle_use_gcp: yes") if not args.force_gps: config.append("bundle_use_gps: no") io.copy(gcp_path, self.path("gcp_list.txt")) config = config + append_config # write config file log.ODM_INFO(config) config_filename = self.get_config_file_path() with open(config_filename, 'w') as fout: fout.write("\n".join(config)) else: log.ODM_WARNING("%s already exists, not rerunning OpenSfM setup" % list_path) def get_config_file_path(self): return io.join_paths(self.opensfm_project_path, 'config.yaml') def reconstructed(self): if not io.file_exists(self.path("reconstruction.json")): return False with open(self.path("reconstruction.json"), 'r') as f: return f.readline().strip() != "[]" def extract_metadata(self, rerun=False): metadata_dir = self.path("exif") if not io.dir_exists(metadata_dir) or rerun: self.run('extract_metadata') def is_feature_matching_done(self): features_dir = self.path("features") matches_dir = self.path("matches") return io.dir_exists(features_dir) and io.dir_exists(matches_dir) def feature_matching(self, rerun=False): features_dir = self.path("features") matches_dir = self.path("matches") if not io.dir_exists(features_dir) or rerun: self.run('detect_features') else: log.ODM_WARNING('Detect features already done: %s exists' % features_dir) if not io.dir_exists(matches_dir) or rerun: self.run('match_features') else: log.ODM_WARNING('Match features already done: %s exists' % matches_dir) def align_reconstructions(self, rerun): alignment_file = self.path('alignment_done.txt') if not io.file_exists(alignment_file) or rerun: log.ODM_INFO("Aligning submodels...") meta_data = metadataset.MetaDataSet(self.opensfm_project_path) reconstruction_shots = tools.load_reconstruction_shots(meta_data) transformations = tools.align_reconstructions(reconstruction_shots, tools.partial_reconstruction_name, True) tools.apply_transformations(transformations) self.touch(alignment_file) else: log.ODM_WARNING('Found a alignment done progress file in: %s' % alignment_file) def touch(self, file): with open(file, 'w') as fout: fout.write("Done!\n") def path(self, *paths): return os.path.join(self.opensfm_project_path, *paths) def extract_cameras(self, output, rerun=False): if not os.path.exists(output) or rerun: try: reconstruction_file = self.path("reconstruction.json") with open(output, 'w') as fout: fout.write(json.dumps(camera.get_cameras_from_opensfm(reconstruction_file), indent=4)) except Exception as e: log.ODM_WARNING("Cannot export cameras to %s. %s." % (output, str(e))) else: log.ODM_INFO("Already extracted cameras") def convert_and_undistort(self, rerun=False, imageFilter=None): log.ODM_INFO("Undistorting %s ..." % self.opensfm_project_path) undistorted_images_path = self.path("undistorted", "images") if not io.dir_exists(undistorted_images_path) or rerun: cmd = undistort.Command(imageFilter) parser = argparse.ArgumentParser() cmd.add_arguments(parser) cmd.run(parser.parse_args([self.opensfm_project_path])) else: log.ODM_WARNING("Found an undistorted directory in %s" % undistorted_images_path) def update_config(self, cfg_dict): cfg_file = self.get_config_file_path() log.ODM_INFO("Updating %s" % cfg_file) if os.path.exists(cfg_file): try: with open(cfg_file) as fin: cfg = yaml.safe_load(fin) for k, v in cfg_dict.items(): cfg[k] = v log.ODM_INFO("%s: %s" % (k, v)) with open(cfg_file, 'w') as fout: fout.write(yaml.dump(cfg, default_flow_style=False)) except Exception as e: log.ODM_WARNING("Cannot update configuration file %s: %s" % (cfg_file, str(e))) else: log.ODM_WARNING("Tried to update configuration, but %s does not exist." % cfg_file) def name(self): return os.path.basename(os.path.abspath(self.path(".."))) def get_submodel_argv(args, submodels_path = None, submodel_name = None): """ Gets argv for a submodel starting from the args passed to the application startup. Additionally, if project_name, submodels_path and submodel_name are passed, the function handles the value and --project-path detection / override. When all arguments are set to None, --project-path and project name are always removed. :return the same as argv, but removing references to --split, setting/replacing --project-path and name removing --rerun-from, --rerun, --rerun-all, --sm-cluster removing --pc-las, --pc-csv, --pc-ept flags (processing these is wasteful) adding --orthophoto-cutline adding --dem-euclidean-map adding --skip-3dmodel (split-merge does not support 3D model merging) tweaking --crop if necessary (DEM merging makes assumption about the area of DEMs and their euclidean maps that require cropping. If cropping is skipped, this leads to errors.) removing --gcp (the GCP path if specified is always "gcp_list.txt") reading the contents of --cameras """ assure_always = ['orthophoto_cutline', 'dem_euclidean_map', 'skip_3dmodel'] remove_always = ['split', 'split_overlap', 'rerun_from', 'rerun', 'gcp', 'end_with', 'sm_cluster', 'rerun_all', 'pc_csv', 'pc_las', 'pc_ept'] read_json_always = ['cameras'] argv = sys.argv result = [argv[0]] # Startup script (/path/to/run.py) args_dict = vars(args).copy() set_keys = [k[:-len("_is_set")] for k in args_dict.keys() if k.endswith("_is_set")] # Handle project name and project path (special case) if "name" in set_keys: del args_dict["name"] set_keys.remove("name") if "project_path" in set_keys: del args_dict["project_path"] set_keys.remove("project_path") # Remove parameters set_keys = [k for k in set_keys if k not in remove_always] # Assure parameters for k in assure_always: if not k in set_keys: set_keys.append(k) args_dict[k] = True # Read JSON always for k in read_json_always: if k in set_keys: try: if isinstance(args_dict[k], str): args_dict[k] = io.path_or_json_string_to_dict(args_dict[k]) if isinstance(args_dict[k], dict): args_dict[k] = json.dumps(args_dict[k]) except ValueError as e: log.ODM_WARNING("Cannot parse/read JSON: {}".format(str(e))) # Handle crop (cannot be zero for split/merge) if "crop" in set_keys: crop_value = float(args_dict["crop"]) if crop_value == 0: crop_value = 0.015625 args_dict["crop"] = crop_value # Populate result for k in set_keys: result.append("--%s" % k.replace("_", "-")) # No second value for booleans if isinstance(args_dict[k], bool) and args_dict[k] == True: continue result.append(str(args_dict[k])) if submodels_path: result.append("--project-path") result.append(submodels_path) if submodel_name: result.append(submodel_name) return result def get_submodel_args_dict(args): submodel_argv = get_submodel_argv(args) result = {} i = 0 while i < len(submodel_argv): arg = submodel_argv[i] next_arg = None if i == len(submodel_argv) - 1 else submodel_argv[i + 1] if next_arg and arg.startswith("--"): if next_arg.startswith("--"): result[arg[2:]] = True else: result[arg[2:]] = next_arg i += 1 elif arg.startswith("--"): result[arg[2:]] = True i += 1 return result def get_submodel_paths(submodels_path, *paths): """ :return Existing paths for all submodels """ result = [] if not os.path.exists(submodels_path): return result for f in os.listdir(submodels_path): if f.startswith('submodel'): p = os.path.join(submodels_path, f, *paths) if os.path.exists(p): result.append(p) else: log.ODM_WARNING("Missing %s from submodel %s" % (p, f)) return result def get_all_submodel_paths(submodels_path, *all_paths): """ :return Existing, multiple paths for all submodels as a nested list (all or nothing for each submodel) if a single file is missing from the submodule, no files are returned for that submodel. (i.e. get_multi_submodel_paths("path/", "odm_orthophoto.tif", "dem.tif")) --> [["path/submodel_0000/odm_orthophoto.tif", "path/submodel_0000/dem.tif"], ["path/submodel_0001/odm_orthophoto.tif", "path/submodel_0001/dem.tif"]] """ result = [] if not os.path.exists(submodels_path): return result for f in os.listdir(submodels_path): if f.startswith('submodel'): all_found = True for ap in all_paths: p = os.path.join(submodels_path, f, ap) if not os.path.exists(p): log.ODM_WARNING("Missing %s from submodel %s" % (p, f)) all_found = False if all_found: result.append([os.path.join(submodels_path, f, ap) for ap in all_paths]) return result