import os import subprocess import sys import rasterio import numpy import math import time import shutil import glob import re from joblib import delayed, Parallel from opendm.system import run from opendm import point_cloud from opendm import io from opendm import system from opendm.concurrency import get_max_memory, parallel_map, get_total_memory from datetime import datetime from opendm.vendor.gdal_fillnodata import main as gdal_fillnodata from opendm import log from .ground_rectification.rectify import run_rectification from . import pdal gdal_proximity = None try: # GDAL >= 3.3 from osgeo_utils.gdal_proximity import main as gdal_proximity except ModuleNotFoundError: # GDAL <= 3.2 try: from osgeo.utils.gdal_proximity import main as gdal_proximity except ModuleNotFoundError: # GDAL <= 3.0 gdal_proximity_script = shutil.which("gdal_proximity.py") if gdal_proximity_script is not None: def gdal_proximity(args): subprocess.run([gdal_proximity_script] + args[1:], check=True) def classify(lasFile, scalar, slope, threshold, window): start = datetime.now() try: pdal.run_pdaltranslate_smrf(lasFile, lasFile, scalar, slope, threshold, window) except: log.ODM_WARNING("Error creating classified file %s" % lasFile) log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start)) return lasFile def rectify(lasFile, reclassify_threshold=5, min_area=750, min_points=500): start = datetime.now() try: log.ODM_INFO("Rectifying {} using with [reclassify threshold: {}, min area: {}, min points: {}]".format(lasFile, reclassify_threshold, min_area, min_points)) run_rectification( input=lasFile, output=lasFile, \ reclassify_plan='median', reclassify_threshold=reclassify_threshold, \ extend_plan='surrounding', extend_grid_distance=5, \ min_area=min_area, min_points=min_points) log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start)) except Exception as e: log.ODM_WARNING("Error rectifying ground in file %s: %s" % (lasFile, str(e))) return lasFile error = None def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True, outdir='', resolution=0.1, max_workers=1, max_tile_size=4096, decimation=None, with_euclidean_map=False, apply_smoothing=True, max_tiles=None): """ Create DEM from multiple radii, and optionally gapfill """ start = datetime.now() kwargs = { 'input': input_point_cloud, 'outdir': outdir, 'outputType': output_type, 'radiuses': ",".join(map(str, radiuses)), 'resolution': resolution, 'maxTiles': 0 if max_tiles is None else max_tiles, 'decimation': 1 if decimation is None else decimation, 'classification': 2 if dem_type == 'dtm' else -1, 'tileSize': max_tile_size } system.run('renderdem "{input}" ' '--outdir "{outdir}" ' '--output-type {outputType} ' '--radiuses {radiuses} ' '--resolution {resolution} ' '--max-tiles {maxTiles} ' '--decimation {decimation} ' '--classification {classification} ' '--tile-size {tileSize} ' '--force '.format(**kwargs), env_vars={'OMP_NUM_THREADS': max_workers}) output_file = "%s.tif" % dem_type output_path = os.path.abspath(os.path.join(outdir, output_file)) # Fetch tiles tiles = [] for p in glob.glob(os.path.join(os.path.abspath(outdir), "*.tif")): filename = os.path.basename(p) m = re.match("^r([\d\.]+)_x\d+_y\d+\.tif", filename) if m is not None: tiles.append({'filename': p, 'radius': float(m.group(1))}) if len(tiles) == 0: raise system.ExitException("No DEM tiles were generated, something went wrong") log.ODM_INFO("Generated %s tiles" % len(tiles)) # Sort tiles by decreasing radius tiles.sort(key=lambda t: float(t['radius']), reverse=True) # Create virtual raster tiles_vrt_path = os.path.abspath(os.path.join(outdir, "tiles.vrt")) tiles_file_list = os.path.abspath(os.path.join(outdir, "tiles_list.txt")) with open(tiles_file_list, 'w') as f: for t in tiles: f.write(t['filename'] + '\n') run('gdalbuildvrt -input_file_list "%s" "%s" ' % (tiles_file_list, tiles_vrt_path)) merged_vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt")) geotiff_small_path = os.path.abspath(os.path.join(outdir, 'tiles.small.tif')) geotiff_small_filled_path = os.path.abspath(os.path.join(outdir, 'tiles.small_filled.tif')) geotiff_path = os.path.abspath(os.path.join(outdir, 'tiles.tif')) # Build GeoTIFF kwargs = { 'max_memory': get_max_memory(), 'threads': max_workers if max_workers else 'ALL_CPUS', 'tiles_vrt': tiles_vrt_path, 'merged_vrt': merged_vrt_path, 'geotiff': geotiff_path, 'geotiff_small': geotiff_small_path, 'geotiff_small_filled': geotiff_small_filled_path } if gapfill: # Sometimes, for some reason gdal_fillnodata.py # behaves strangely when reading data directly from a .VRT # so we need to convert to GeoTIFF first. # Scale to 10% size run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co BIGTIFF=IF_SAFER ' '-co COMPRESS=DEFLATE ' '--config GDAL_CACHEMAX {max_memory}% ' '-outsize 10% 0 ' '"{tiles_vrt}" "{geotiff_small}"'.format(**kwargs)) # Fill scaled gdal_fillnodata(['.', '-co', 'NUM_THREADS=%s' % kwargs['threads'], '-co', 'BIGTIFF=IF_SAFER', '-co', 'COMPRESS=DEFLATE', '--config', 'GDAL_CACHE_MAX', str(kwargs['max_memory']) + '%', '-b', '1', '-of', 'GTiff', kwargs['geotiff_small'], kwargs['geotiff_small_filled']]) # Merge filled scaled DEM with unfilled DEM using bilinear interpolation run('gdalbuildvrt -resolution highest -r bilinear "%s" "%s" "%s"' % (merged_vrt_path, geotiff_small_filled_path, tiles_vrt_path)) run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co TILED=YES ' '-co BIGTIFF=IF_SAFER ' '-co COMPRESS=DEFLATE ' '--config GDAL_CACHEMAX {max_memory}% ' '"{merged_vrt}" "{geotiff}"'.format(**kwargs)) else: run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co TILED=YES ' '-co BIGTIFF=IF_SAFER ' '-co COMPRESS=DEFLATE ' '--config GDAL_CACHEMAX {max_memory}% ' '"{tiles_vrt}" "{geotiff}"'.format(**kwargs)) if apply_smoothing: median_smoothing(geotiff_path, output_path, num_workers=max_workers) os.remove(geotiff_path) else: os.replace(geotiff_path, output_path) if os.path.exists(tiles_vrt_path): if with_euclidean_map: emap_path = io.related_file_path(output_path, postfix=".euclideand") compute_euclidean_map(tiles_vrt_path, emap_path, overwrite=True) for cleanup_file in [tiles_vrt_path, tiles_file_list, merged_vrt_path, geotiff_small_path, geotiff_small_filled_path]: if os.path.exists(cleanup_file): os.remove(cleanup_file) for t in tiles: if os.path.exists(t['filename']): os.remove(t['filename']) log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start)) def compute_euclidean_map(geotiff_path, output_path, overwrite=False): if not os.path.exists(geotiff_path): log.ODM_WARNING("Cannot compute euclidean map (file does not exist: %s)" % geotiff_path) return nodata = -9999 with rasterio.open(geotiff_path) as f: nodata = f.nodatavals[0] if not os.path.isfile(output_path) or overwrite: if os.path.isfile(output_path): os.remove(output_path) log.ODM_INFO("Computing euclidean distance: %s" % output_path) if gdal_proximity is not None: try: gdal_proximity(['gdal_proximity.py', geotiff_path, output_path, '-values', str(nodata), '-co', 'TILED=YES', '-co', 'BIGTIFF=IF_SAFER', '-co', 'COMPRESS=DEFLATE', ]) except Exception as e: log.ODM_WARNING("Cannot compute euclidean distance: %s" % str(e)) if os.path.exists(output_path): return output_path else: log.ODM_WARNING("Cannot compute euclidean distance file: %s" % output_path) else: log.ODM_WARNING("Cannot compute euclidean map, gdal_proximity is missing") else: log.ODM_INFO("Found a euclidean distance map: %s" % output_path) return output_path def median_smoothing(geotiff_path, output_path, window_size=512, num_workers=1, radius=4): """ Apply median smoothing """ start = datetime.now() if not os.path.exists(geotiff_path): raise Exception('File %s does not exist!' % geotiff_path) kwargs = { 'input': geotiff_path, 'output': output_path, 'window': window_size, 'radius': radius, } system.run('fastrasterfilter "{input}" ' '--output "{output}" ' '--window-size {window} ' '--radius {radius} ' '--co TILED=YES ' '--co BIGTIFF=IF_SAFER ' '--co COMPRESS=DEFLATE '.format(**kwargs), env_vars={'OMP_NUM_THREADS': num_workers}) log.ODM_INFO('Completed smoothing to create %s in %s' % (output_path, datetime.now() - start)) return output_path def get_dem_radius_steps(stats_file, steps, resolution, multiplier = 1.0): radius_steps = [point_cloud.get_spacing(stats_file, resolution) * multiplier] for _ in range(steps - 1): radius_steps.append(radius_steps[-1] * math.sqrt(2)) return radius_steps