import os import shutil import json import yaml from opendm import log from opendm.osfm import OSFMContext, get_submodel_argv, get_submodel_paths, get_all_submodel_paths from opendm import types from opendm import io from opendm import system from opendm import orthophoto from opendm.gcp import GCPFile from opendm.dem import pdal, utils from opendm.dem.merge import euclidean_merge_dems from opensfm.large import metadataset from opendm.cropper import Cropper from opendm.concurrency import get_max_memory from opendm.remote import LocalRemoteExecutor from opendm.shots import merge_geojson_shots from opendm import point_cloud from opendm.utils import double_quote from opendm.tiles.tiler import generate_dem_tiles from opendm.cogeo import convert_to_cogeo from opendm import multispectral class ODMSplitStage(types.ODM_Stage): def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] photos = reconstruction.photos outputs['large'] = False image_groups_file = os.path.join(args.project_path, "image_groups.txt") if 'split_image_groups_is_set' in args: image_groups_file = os.path.abspath(args.split_image_groups) if io.file_exists(image_groups_file): outputs['large'] = True elif len(photos) > args.split: # check for availability of geotagged photos if reconstruction.has_geotagged_photos(): outputs['large'] = True else: log.ODM_WARNING('Could not perform split-merge as GPS information in photos or image_groups.txt is missing.') if outputs['large']: # If we have a cluster address, we'll use a distributed workflow local_workflow = not bool(args.sm_cluster) octx = OSFMContext(tree.opensfm) split_done_file = octx.path("split_done.txt") if not io.file_exists(split_done_file) or self.rerun(): orig_max_concurrency = args.max_concurrency if not local_workflow: args.max_concurrency = max(1, args.max_concurrency - 1) log.ODM_INFO("Setting max-concurrency to %s to better handle remote splits" % args.max_concurrency) log.ODM_INFO("Large dataset detected (%s photos) and split set at %s. Preparing split merge." % (len(photos), args.split)) multiplier = (1.0 / len(reconstruction.multi_camera)) if reconstruction.multi_camera else 1.0 config = [ "submodels_relpath: " + os.path.join("..", "submodels", "opensfm"), "submodel_relpath_template: " + os.path.join("..", "submodels", "submodel_%04d", "opensfm"), "submodel_images_relpath_template: " + os.path.join("..", "submodels", "submodel_%04d", "images"), "submodel_size: %s" % max(2, int(float(args.split) * multiplier)), "submodel_overlap: %s" % args.split_overlap, ] octx.setup(args, tree.dataset_raw, reconstruction=reconstruction, append_config=config, rerun=self.rerun()) octx.photos_to_metadata(photos, args.rolling_shutter, args.rolling_shutter_readout, self.rerun()) self.update_progress(5) if local_workflow: octx.feature_matching(self.rerun()) self.update_progress(20) # Create submodels if not io.dir_exists(tree.submodels_path) or self.rerun(): if io.dir_exists(tree.submodels_path): log.ODM_WARNING("Removing existing submodels directory: %s" % tree.submodels_path) shutil.rmtree(tree.submodels_path) octx.run("create_submodels") else: log.ODM_WARNING("Submodels directory already exist at: %s" % tree.submodels_path) # Find paths of all submodels mds = metadataset.MetaDataSet(tree.opensfm) submodel_paths = [os.path.abspath(p) for p in mds.get_submodel_paths()] for sp in submodel_paths: sp_octx = OSFMContext(sp) submodel_images_dir = os.path.abspath(sp_octx.path("..", "images")) # Copy filtered GCP file if needed # One in OpenSfM's directory, one in the submodel project directory if reconstruction.gcp and reconstruction.gcp.exists(): submodel_gcp_file = os.path.abspath(sp_octx.path("..", "gcp_list.txt")) if reconstruction.gcp.make_filtered_copy(submodel_gcp_file, submodel_images_dir): log.ODM_INFO("Copied filtered GCP file to %s" % submodel_gcp_file) io.copy(submodel_gcp_file, os.path.abspath(sp_octx.path("gcp_list.txt"))) else: log.ODM_INFO("No GCP will be copied for %s, not enough images in the submodel are referenced by the GCP" % sp_octx.name()) # Copy GEO file if needed (one for each submodel project directory) if tree.odm_geo_file is not None and os.path.isfile(tree.odm_geo_file): geo_dst_path = os.path.abspath(sp_octx.path("..", "geo.txt")) io.copy(tree.odm_geo_file, geo_dst_path) log.ODM_INFO("Copied GEO file to %s" % geo_dst_path) # If this is a multispectral dataset, # we need to link the multispectral images if reconstruction.multi_camera: submodel_images = os.listdir(submodel_images_dir) primary_band_name = multispectral.get_primary_band_name(reconstruction.multi_camera, args.primary_band) _, p2s = multispectral.compute_band_maps(reconstruction.multi_camera, primary_band_name) for filename in p2s: if filename in submodel_images: secondary_band_photos = p2s[filename] for p in secondary_band_photos: system.link_file(os.path.join(tree.dataset_raw, p.filename), submodel_images_dir) # Reconstruct each submodel log.ODM_INFO("Dataset has been split into %s submodels. Reconstructing each submodel..." % len(submodel_paths)) self.update_progress(25) if local_workflow: for sp in submodel_paths: log.ODM_INFO("Reconstructing %s" % sp) local_sp_octx = OSFMContext(sp) local_sp_octx.create_tracks(self.rerun()) local_sp_octx.reconstruct(args.rolling_shutter, not args.sfm_no_partial, self.rerun()) else: lre = LocalRemoteExecutor(args.sm_cluster, args.rolling_shutter, self.rerun()) lre.set_projects([os.path.abspath(os.path.join(p, "..")) for p in submodel_paths]) lre.run_reconstruction() self.update_progress(50) remove_paths = [] # Align if not args.sm_no_align: octx.align_reconstructions(self.rerun()) self.update_progress(55) # Aligned reconstruction is in reconstruction.aligned.json # We need to rename it to reconstruction.json for sp in submodel_paths: sp_octx = OSFMContext(sp) aligned_recon = sp_octx.path('reconstruction.aligned.json') unaligned_recon = sp_octx.path('reconstruction.unaligned.json') main_recon = sp_octx.path('reconstruction.json') if io.file_exists(main_recon) and io.file_exists(unaligned_recon) and not self.rerun(): log.ODM_INFO("Submodel %s has already been aligned." % sp_octx.name()) continue if not io.file_exists(aligned_recon): log.ODM_WARNING("Submodel %s does not have an aligned reconstruction (%s). " "This could mean that the submodel could not be reconstructed " " (are there enough features to reconstruct it?). Skipping." % (sp_octx.name(), aligned_recon)) remove_paths.append(sp) continue if io.file_exists(main_recon): shutil.move(main_recon, unaligned_recon) shutil.move(aligned_recon, main_recon) log.ODM_INFO("%s is now %s" % (aligned_recon, main_recon)) # Remove invalid submodels submodel_paths = [p for p in submodel_paths if not p in remove_paths] # Run ODM toolchain for each submodel if local_workflow: for sp in submodel_paths: sp_octx = OSFMContext(sp) log.ODM_INFO("========================") log.ODM_INFO("Processing %s" % sp_octx.name()) log.ODM_INFO("========================") argv = get_submodel_argv(args, tree.submodels_path, sp_octx.name()) # Re-run the ODM toolchain on the submodel system.run(" ".join(map(double_quote, map(str, argv))), env_vars=os.environ.copy()) else: lre.set_projects([os.path.abspath(os.path.join(p, "..")) for p in submodel_paths]) lre.run_toolchain() # Restore max_concurrency value args.max_concurrency = orig_max_concurrency octx.touch(split_done_file) else: log.ODM_WARNING('Found a split done file in: %s' % split_done_file) else: log.ODM_INFO("Normal dataset, will process all at once.") self.progress = 0.0 class ODMMergeStage(types.ODM_Stage): def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] if outputs['large']: if not os.path.exists(tree.submodels_path): raise system.ExitException("We reached the merge stage, but %s folder does not exist. Something must have gone wrong at an earlier stage. Check the log and fix possible problem before restarting?" % tree.submodels_path) # Merge point clouds if args.merge in ['all', 'pointcloud']: if not io.file_exists(tree.odm_georeferencing_model_laz) or self.rerun(): all_point_clouds = get_submodel_paths(tree.submodels_path, "odm_georeferencing", "odm_georeferenced_model.laz") try: point_cloud.merge(all_point_clouds, tree.odm_georeferencing_model_laz, rerun=self.rerun()) point_cloud.post_point_cloud_steps(args, tree, self.rerun()) except Exception as e: log.ODM_WARNING("Could not merge point cloud: %s (skipping)" % str(e)) else: log.ODM_WARNING("Found merged point cloud in %s" % tree.odm_georeferencing_model_laz) self.update_progress(25) # Merge crop bounds merged_bounds_file = os.path.join(tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') if not io.file_exists(merged_bounds_file) or self.rerun(): all_bounds = get_submodel_paths(tree.submodels_path, 'odm_georeferencing', 'odm_georeferenced_model.bounds.gpkg') log.ODM_INFO("Merging all crop bounds: %s" % all_bounds) if len(all_bounds) > 0: # Calculate a new crop area # based on the convex hull of all crop areas of all submodels # (without a buffer, otherwise we are double-cropping) Cropper.merge_bounds(all_bounds, merged_bounds_file, 0) else: log.ODM_WARNING("No bounds found for any submodel.") # Merge orthophotos if args.merge in ['all', 'orthophoto']: if not io.dir_exists(tree.odm_orthophoto): system.mkdir_p(tree.odm_orthophoto) if not io.file_exists(tree.odm_orthophoto_tif) or self.rerun(): all_orthos_and_ortho_cuts = get_all_submodel_paths(tree.submodels_path, os.path.join("odm_orthophoto", "odm_orthophoto_feathered.tif"), os.path.join("odm_orthophoto", "odm_orthophoto_cut.tif"), ) if len(all_orthos_and_ortho_cuts) > 1: log.ODM_INFO("Found %s submodels with valid orthophotos and cutlines" % len(all_orthos_and_ortho_cuts)) # TODO: histogram matching via rasterio # currently parts have different color tones if io.file_exists(tree.odm_orthophoto_tif): os.remove(tree.odm_orthophoto_tif) orthophoto_vars = orthophoto.get_orthophoto_vars(args) orthophoto.merge(all_orthos_and_ortho_cuts, tree.odm_orthophoto_tif, orthophoto_vars) orthophoto.post_orthophoto_steps(args, merged_bounds_file, tree.odm_orthophoto_tif, tree.orthophoto_tiles, args.orthophoto_resolution) elif len(all_orthos_and_ortho_cuts) == 1: # Simply copy log.ODM_WARNING("A single orthophoto/cutline pair was found between all submodels.") shutil.copyfile(all_orthos_and_ortho_cuts[0][0], tree.odm_orthophoto_tif) else: log.ODM_WARNING("No orthophoto/cutline pairs were found in any of the submodels. No orthophoto will be generated.") else: log.ODM_WARNING("Found merged orthophoto in %s" % tree.odm_orthophoto_tif) self.update_progress(75) # Merge DEMs def merge_dems(dem_filename, human_name): if not io.dir_exists(tree.path('odm_dem')): system.mkdir_p(tree.path('odm_dem')) dem_file = tree.path("odm_dem", dem_filename) if not io.file_exists(dem_file) or self.rerun(): all_dems = get_submodel_paths(tree.submodels_path, "odm_dem", dem_filename) log.ODM_INFO("Merging %ss" % human_name) # Merge dem_vars = utils.get_dem_vars(args) eu_map_source = None # Default # Use DSM's euclidean map for DTMs # (requires the DSM to be computed) if human_name == "DTM": eu_map_source = "dsm" euclidean_merge_dems(all_dems, dem_file, dem_vars, euclidean_map_source=eu_map_source) if io.file_exists(dem_file): # Crop if args.crop > 0 or args.boundary: Cropper.crop(merged_bounds_file, dem_file, dem_vars, keep_original=not args.optimize_disk_space) log.ODM_INFO("Created %s" % dem_file) if args.tiles: generate_dem_tiles(dem_file, tree.path("%s_tiles" % human_name.lower()), args.max_concurrency, args.dem_resolution) if args.cog: convert_to_cogeo(dem_file, max_workers=args.max_concurrency) else: log.ODM_WARNING("Cannot merge %s, %s was not created" % (human_name, dem_file)) else: log.ODM_WARNING("Found merged %s in %s" % (human_name, dem_filename)) if args.merge in ['all', 'dem'] and args.dsm: merge_dems("dsm.tif", "DSM") if args.merge in ['all', 'dem'] and args.dtm: merge_dems("dtm.tif", "DTM") self.update_progress(95) # Merge reports if not io.dir_exists(tree.odm_report): system.mkdir_p(tree.odm_report) geojson_shots = tree.path(tree.odm_report, "shots.geojson") if not io.file_exists(geojson_shots) or self.rerun(): geojson_shots_files = get_submodel_paths(tree.submodels_path, "odm_report", "shots.geojson") log.ODM_INFO("Merging %s shots.geojson files" % len(geojson_shots_files)) merge_geojson_shots(geojson_shots_files, geojson_shots) else: log.ODM_WARNING("Found merged shots.geojson in %s" % tree.odm_report) # Stop the pipeline short by skipping to the postprocess stage. # Afterwards, we're done. self.next_stage = self.last_stage() else: log.ODM_INFO("Normal dataset, nothing to merge.") self.progress = 0.0