import os import shutil import warnings import numpy as np from opendm import get_image_size from opendm import location from opendm.gcp import GCPFile from pyproj import CRS import xmltodict as x2d from six import string_types from opendm import log from opendm import io from opendm import system from opendm import context from opendm.progress import progressbc from opendm.photo import ODM_Photo # Ignore warnings about proj information being lost warnings.filterwarnings("ignore") class ODM_Reconstruction(object): def __init__(self, photos): self.photos = photos self.georef = None self.gcp = None self.geo_file = None self.multi_camera = self.detect_multi_camera() def detect_multi_camera(self): """ Looks at the reconstruction photos and determines if this is a single or multi-camera setup. """ band_photos = {} band_indexes = {} for p in self.photos: if not p.band_name in band_photos: band_photos[p.band_name] = [] if not p.band_name in band_indexes: band_indexes[p.band_name] = str(p.band_index) band_photos[p.band_name].append(p) bands_count = len(band_photos) if bands_count >= 2 and bands_count <= 8: # Validate that all bands have the same number of images, # otherwise this is not a multi-camera setup img_per_band = len(band_photos[p.band_name]) for band in band_photos: if len(band_photos[band]) != img_per_band: log.ODM_ERROR("Multi-camera setup detected, but band \"%s\" (identified from \"%s\") has only %s images (instead of %s), perhaps images are missing or are corrupted. Please include all necessary files to process all bands and try again." % (band, band_photos[band][0].filename, len(band_photos[band]), img_per_band)) raise RuntimeError("Invalid multi-camera images") mc = [] for band_name in band_indexes: mc.append({'name': band_name, 'photos': band_photos[band_name]}) # Sort by band index mc.sort(key=lambda x: band_indexes[x['name']]) return mc return None def is_georeferenced(self): return self.georef is not None def has_gcp(self): return self.is_georeferenced() and self.gcp is not None def georeference_with_gcp(self, gcp_file, output_coords_file, output_gcp_file, output_model_txt_geo, rerun=False): if not io.file_exists(output_coords_file) or not io.file_exists(output_gcp_file) or rerun: gcp = GCPFile(gcp_file) if gcp.exists(): if gcp.entries_count() == 0: raise RuntimeError("This GCP file does not have any entries. Are the entries entered in the proper format?") # Convert GCP file to a UTM projection since the rest of the pipeline # does not handle other SRS well. rejected_entries = [] utm_gcp = GCPFile(gcp.create_utm_copy(output_gcp_file, filenames=[p.filename for p in self.photos], rejected_entries=rejected_entries, include_extras=False)) if not utm_gcp.exists(): raise RuntimeError("Could not project GCP file to UTM. Please double check your GCP file for mistakes.") for re in rejected_entries: log.ODM_WARNING("GCP line ignored (image not found): %s" % str(re)) if utm_gcp.entries_count() > 0: log.ODM_INFO("%s GCP points will be used for georeferencing" % utm_gcp.entries_count()) else: raise RuntimeError("A GCP file was provided, but no valid GCP entries could be used. Note that the GCP file is case sensitive (\".JPG\" is not the same as \".jpg\").") self.gcp = utm_gcp # Compute RTC offsets from GCP points x_pos = [p.x for p in utm_gcp.iter_entries()] y_pos = [p.y for p in utm_gcp.iter_entries()] x_off, y_off = int(np.round(np.mean(x_pos))), int(np.round(np.mean(y_pos))) # Create coords file, we'll be using this later # during georeferencing with open(output_coords_file, 'w') as f: coords_header = gcp.wgs84_utm_zone() f.write(coords_header + "\n") f.write("{} {}\n".format(x_off, y_off)) log.ODM_INFO("Generated coords file from GCP: %s" % coords_header) # Deprecated: This is mostly for backward compatibility and should be # be removed at some point shutil.copyfile(output_coords_file, output_model_txt_geo) log.ODM_INFO("Wrote %s" % output_model_txt_geo) else: log.ODM_WARNING("GCP file does not exist: %s" % gcp_file) return else: log.ODM_INFO("Coordinates file already exist: %s" % output_coords_file) log.ODM_INFO("GCP file already exist: %s" % output_gcp_file) self.gcp = GCPFile(output_gcp_file) self.georef = ODM_GeoRef.FromCoordsFile(output_coords_file) return self.georef def georeference_with_gps(self, images_path, output_coords_file, output_model_txt_geo, rerun=False): try: if not io.file_exists(output_coords_file) or rerun: location.extract_utm_coords(self.photos, images_path, output_coords_file) else: log.ODM_INFO("Coordinates file already exist: %s" % output_coords_file) # Deprecated: This is mostly for backward compatibility and should be # be removed at some point if not io.file_exists(output_model_txt_geo) or rerun: with open(output_coords_file, 'r') as f: with open(output_model_txt_geo, 'w+') as w: w.write(f.readline()) # CRS w.write(f.readline()) # Offset else: log.ODM_INFO("Model geo file already exist: %s" % output_model_txt_geo) self.georef = ODM_GeoRef.FromCoordsFile(output_coords_file) except: log.ODM_WARNING('Could not generate coordinates file. The orthophoto will not be georeferenced.') self.gcp = GCPFile(None) return self.georef def save_proj_srs(self, file): # Save proj to file for future use (unless this # dataset is not georeferenced) if self.is_georeferenced(): with open(file, 'w') as f: f.write(self.get_proj_srs()) def get_proj_srs(self): if self.is_georeferenced(): return self.georef.proj4() def get_photo(self, filename): for p in self.photos: if p.filename == filename: return p class ODM_GeoRef(object): @staticmethod def FromCoordsFile(coords_file): # check for coordinate file existence if not io.file_exists(coords_file): log.ODM_WARNING('Could not find file %s' % coords_file) return srs = None utm_east_offset = None utm_north_offset = None with open(coords_file) as f: # extract reference system and utm zone from first line. # We will assume the following format: # 'WGS84 UTM 17N' or 'WGS84 UTM 17N \n' line = f.readline().rstrip() srs = location.parse_srs_header(line) # second line is a northing/easting offset line = f.readline().rstrip() utm_east_offset, utm_north_offset = map(float, line.split(" ")) return ODM_GeoRef(srs, utm_east_offset, utm_north_offset) def __init__(self, srs, utm_east_offset, utm_north_offset): self.srs = srs self.utm_east_offset = utm_east_offset self.utm_north_offset = utm_north_offset self.transform = [] def proj4(self): return self.srs.to_proj4() def utm_offset(self): return (self.utm_east_offset, self.utm_north_offset) class ODM_Tree(object): def __init__(self, root_path, gcp_file = None, geo_file = None): # root path to the project self.root_path = io.absolute_path_file(root_path) self.input_images = os.path.join(self.root_path, 'images') # modules paths # here are defined where all modules should be located in # order to keep track all files al directories during the # whole reconstruction process. self.dataset_raw = os.path.join(self.root_path, 'images') self.opensfm = os.path.join(self.root_path, 'opensfm') self.openmvs = os.path.join(self.opensfm, 'undistorted', 'openmvs') self.odm_meshing = os.path.join(self.root_path, 'odm_meshing') self.odm_texturing = os.path.join(self.root_path, 'odm_texturing') self.odm_25dtexturing = os.path.join(self.root_path, 'odm_texturing_25d') self.odm_georeferencing = os.path.join(self.root_path, 'odm_georeferencing') self.odm_filterpoints = os.path.join(self.root_path, 'odm_filterpoints') self.odm_orthophoto = os.path.join(self.root_path, 'odm_orthophoto') self.odm_report = os.path.join(self.root_path, 'odm_report') # important files paths # benchmarking self.benchmarking = os.path.join(self.root_path, 'benchmark.txt') self.dataset_list = os.path.join(self.root_path, 'img_list.txt') # opensfm self.opensfm_image_list = os.path.join(self.opensfm, 'image_list.txt') self.opensfm_reconstruction = os.path.join(self.opensfm, 'reconstruction.json') self.opensfm_reconstruction_nvm = os.path.join(self.opensfm, 'undistorted/reconstruction.nvm') self.opensfm_geocoords_reconstruction = os.path.join(self.opensfm, 'reconstruction.geocoords.json') # OpenMVS self.openmvs_model = os.path.join(self.openmvs, 'scene_dense_dense_filtered.ply') # filter points self.filtered_point_cloud = os.path.join(self.odm_filterpoints, "point_cloud.ply") # odm_meshing self.odm_mesh = os.path.join(self.odm_meshing, 'odm_mesh.ply') self.odm_meshing_log = os.path.join(self.odm_meshing, 'odm_meshing_log.txt') self.odm_25dmesh = os.path.join(self.odm_meshing, 'odm_25dmesh.ply') self.odm_25dmeshing_log = os.path.join(self.odm_meshing, 'odm_25dmeshing_log.txt') # texturing self.odm_textured_model_obj = 'odm_textured_model_geo.obj' # odm_georeferencing self.odm_georeferencing_coords = os.path.join( self.odm_georeferencing, 'coords.txt') self.odm_georeferencing_gcp = gcp_file or io.find('gcp_list.txt', self.root_path) self.odm_georeferencing_gcp_utm = os.path.join(self.odm_georeferencing, 'gcp_list_utm.txt') self.odm_geo_file = geo_file or io.find('geo.txt', self.root_path) self.odm_georeferencing_proj = 'proj.txt' self.odm_georeferencing_model_txt_geo = os.path.join( self.odm_georeferencing, 'odm_georeferencing_model_geo.txt') self.odm_georeferencing_xyz_file = os.path.join( self.odm_georeferencing, 'odm_georeferenced_model.csv') self.odm_georeferencing_model_laz = os.path.join( self.odm_georeferencing, 'odm_georeferenced_model.laz') self.odm_georeferencing_model_las = os.path.join( self.odm_georeferencing, 'odm_georeferenced_model.las') # odm_orthophoto self.odm_orthophoto_render = os.path.join(self.odm_orthophoto, 'odm_orthophoto_render.tif') self.odm_orthophoto_tif = os.path.join(self.odm_orthophoto, 'odm_orthophoto.tif') self.odm_orthophoto_corners = os.path.join(self.odm_orthophoto, 'odm_orthophoto_corners.txt') self.odm_orthophoto_log = os.path.join(self.odm_orthophoto, 'odm_orthophoto_log.txt') self.odm_orthophoto_tif_log = os.path.join(self.odm_orthophoto, 'gdal_translate_log.txt') # tiles self.orthophoto_tiles = os.path.join(self.root_path, "orthophoto_tiles") # Split-merge self.submodels_path = os.path.join(self.root_path, 'submodels') # Tiles self.entwine_pointcloud = self.path("entwine_pointcloud") def path(self, *args): return os.path.join(self.root_path, *args) class ODM_Stage: def __init__(self, name, args, progress=0.0, **params): self.name = name self.args = args self.progress = progress self.params = params if self.params is None: self.params = {} self.next_stage = None self.prev_stage = None def connect(self, stage): self.next_stage = stage stage.prev_stage = self return stage def rerun(self): """ Does this stage need to be rerun? """ return (self.args.rerun is not None and self.args.rerun == self.name) or \ (self.args.rerun_all) or \ (self.args.rerun_from is not None and self.name in self.args.rerun_from) def run(self, outputs = {}): start_time = system.now_raw() log.ODM_INFO('Running %s stage' % self.name) self.process(self.args, outputs) # The tree variable should always be populated at this point if outputs.get('tree') is None: raise Exception("Assert violation: tree variable is missing from outputs dictionary.") if self.args.time: system.benchmark(start_time, outputs['tree'].benchmarking, self.name) log.ODM_INFO('Finished %s stage' % self.name) self.update_progress_end() # Last stage? if self.args.end_with == self.name or self.args.rerun == self.name: log.ODM_INFO("No more stages to run") return # Run next stage? elif self.next_stage is not None: self.next_stage.run(outputs) def delta_progress(self): if self.prev_stage: return max(0.0, self.progress - self.prev_stage.progress) else: return max(0.0, self.progress) def previous_stages_progress(self): if self.prev_stage: return max(0.0, self.prev_stage.progress) else: return 0.0 def update_progress_end(self): self.update_progress(100.0) def update_progress(self, progress): progress = max(0.0, min(100.0, progress)) progressbc.send_update(self.previous_stages_progress() + (self.delta_progress() / 100.0) * float(progress)) def process(self, args, outputs): raise NotImplementedError