import os import sys import gippy import numpy import math import time from opendm.system import run from opendm import point_cloud from opendm.concurrency import get_max_memory from scipy import ndimage, signal from datetime import datetime from opendm import log try: import Queue as queue except: import queue import threading from . import pdal def classify(lasFile, scalar, slope, threshold, window, verbose=False): start = datetime.now() try: pdal.run_pdaltranslate_smrf(lasFile, lasFile, scalar, slope, threshold, window, verbose) except: raise Exception("Error creating classified file %s" % fout) log.ODM_INFO('Created %s in %s' % (os.path.relpath(lasFile), datetime.now() - start)) return lasFile error = None def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True, outdir='', resolution=0.1, max_workers=1, max_tile_size=2048, verbose=False, decimation=None): """ Create DEM from multiple radii, and optionally gapfill """ global error error = None start = datetime.now() if not os.path.exists(outdir): log.ODM_INFO("Creating %s" % outdir) os.mkdir(outdir) extent = point_cloud.get_extent(input_point_cloud) log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy'])) ext_width = extent['maxx'] - extent['minx'] ext_height = extent['maxy'] - extent['miny'] final_dem_resolution = (int(math.ceil(ext_width / float(resolution))), int(math.ceil(ext_height / float(resolution)))) final_dem_pixels = final_dem_resolution[0] * final_dem_resolution[1] num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2)))) num_tiles = num_splits * num_splits log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % (final_dem_resolution, max_tile_size, num_tiles)) tile_bounds_width = ext_width / float(num_splits) tile_bounds_height = ext_height / float(num_splits) tiles = [] for r in radiuses: minx = extent['minx'] for x in range(num_splits): miny = extent['miny'] if x == num_splits - 1: maxx = extent['maxx'] else: maxx = minx + tile_bounds_width for y in range(num_splits): if y == num_splits - 1: maxy = extent['maxy'] else: maxy = miny + tile_bounds_height filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y)) tiles.append({ 'radius': r, 'bounds': { 'minx': minx, 'maxx': maxx, 'miny': miny, 'maxy': maxy }, 'filename': filename }) miny = maxy minx = maxx # Sort tiles by increasing radius tiles.sort(key=lambda t: float(t['radius']), reverse=True) def process_one(q): log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution)) d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds']) if dem_type == 'dsm': d = pdal.json_add_classification_filter(d, 2, equality='max') elif dem_type == 'dtm': d = pdal.json_add_classification_filter(d, 2) if decimation is not None: d = pdal.json_add_decimation_filter(d, decimation) pdal.json_add_readers(d, [input_point_cloud]) pdal.run_pipeline(d, verbose=verbose) def worker(): global error while True: (num, q) = pq.get() if q is None or error is not None: pq.task_done() break try: process_one(q) except Exception as e: error = e finally: pq.task_done() if max_workers > 1: use_single_thread = False pq = queue.PriorityQueue() threads = [] for i in range(max_workers): t = threading.Thread(target=worker) t.start() threads.append(t) for t in tiles: pq.put((i, t.copy())) def stop_workers(): for i in range(len(threads)): pq.put((-1, None)) for t in threads: t.join() # block until all tasks are done try: while pq.unfinished_tasks > 0: time.sleep(0.5) except KeyboardInterrupt: print("CTRL+C terminating...") stop_workers() sys.exit(1) stop_workers() if error is not None: # Try to reprocess using a single thread # in case this was a memory error log.ODM_WARNING("DEM processing failed with multiple threads, let's retry with a single thread...") use_single_thread = True else: use_single_thread = True if use_single_thread: # Boring, single thread processing for q in tiles: process_one(q) output_file = "%s.tif" % dem_type output_path = os.path.abspath(os.path.join(outdir, output_file)) # Verify tile results for t in tiles: if not os.path.exists(t['filename']): raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename'])) # Create virtual raster vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt")) run('gdalbuildvrt "%s" "%s"' % (vrt_path, '" "'.join(map(lambda t: t['filename'], tiles)))) geotiff_path = os.path.abspath(os.path.join(outdir, 'merged.tif')) # Build GeoTIFF kwargs = { 'max_memory': get_max_memory(), 'threads': max_workers if max_workers else 'ALL_CPUS', 'vrt': vrt_path, 'geotiff': geotiff_path } if gapfill: run('gdal_fillnodata.py ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '-b 1 ' '-of GTiff ' '{vrt} {geotiff}'.format(**kwargs)) else: run('gdal_translate ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '{vrt} {geotiff}'.format(**kwargs)) post_process(geotiff_path, output_path) os.remove(geotiff_path) if os.path.exists(vrt_path): os.remove(vrt_path) for t in tiles: if os.path.exists(t['filename']): os.remove(t['filename']) log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start)) def post_process(geotiff_path, output_path, smoothing_iterations=1): """ Apply median smoothing """ start = datetime.now() if not os.path.exists(geotiff_path): raise Exception('File %s does not exist!' % geotiff_path) log.ODM_INFO('Starting post processing (smoothing)...') img = gippy.GeoImage(geotiff_path) nodata = img[0].nodata() arr = img[0].read() # Median filter (careful, changing the value 5 might require tweaking) # the lines below. There's another numpy function that takes care of # these edge cases, but it's slower. for i in range(smoothing_iterations): log.ODM_INFO("Smoothing iteration %s" % str(i + 1)) arr = signal.medfilt(arr, 5) # Fill corner points with nearest value if arr.shape >= (4, 4): arr[0][:2] = arr[1][0] = arr[1][1] arr[0][-2:] = arr[1][-1] = arr[2][-1] arr[-1][:2] = arr[-2][0] = arr[-2][1] arr[-1][-2:] = arr[-2][-1] = arr[-2][-2] # Median filter leaves a bunch of zeros in nodata areas locs = numpy.where(arr == 0.0) arr[locs] = nodata # write output imgout = gippy.GeoImage.create_from(img, output_path) imgout.set_nodata(nodata) imgout[0].write(arr) output_path = imgout.filename() imgout = None log.ODM_INFO('Completed post processing to create %s in %s' % (os.path.relpath(output_path), datetime.now() - start)) return output_path