![ODM Logo](https://user-images.githubusercontent.com/1951843/79699889-438ce580-8260-11ea-9c79-8667834aeab2.png) An open source command line toolkit for processing aerial drone imagery. ODM turns simple 2D images into: * Classified Point Clouds * 3D Textured Models * Georeferenced Orthorectified Imagery * Georeferenced Digital Elevation Models ![images-diag](https://user-images.githubusercontent.com/1174901/96644651-5b205600-12f7-11eb-827b-8f4a3a6f3b21.png) The application is available for Windows, Mac and Linux and it works from the command line, making it ideal for power users, scripts and for integration with other software. If you would rather not type commands in a shell and are looking for a friendly user interface, check out [WebODM](https://github.com/OpenDroneMap/WebODM). ## Quickstart The easiest way to run ODM on is via docker. To install docker, see [docs.docker.com](https://docs.docker.com). Once you have docker installed and [working](https://docs.docker.com/get-started/#test-docker-installation), you can run ODM by placing some images (JPEGs or TIFFs) in a folder named “images” (for example `C:\Users\youruser\datasets\project\images` or `/home/youruser/datasets/project/images`) and simply run from a Command Prompt / Terminal: ```bash # Windows docker run -ti --rm -v c:/Users/youruser/datasets:/datasets opendronemap/odm --project-path /datasets project # Mac/Linux docker run -ti --rm -v /home/youruser/datasets:/datasets opendronemap/odm --project-path /datasets project ``` You can pass [additional parameters](https://docs.opendronemap.org/arguments/) by appending them to the command: ```bash docker run -ti --rm -v /datasets:/datasets opendronemap/odm --project-path /datasets project [--additional --parameters --here] ``` For example, to generate a DSM (`--dsm`) and increase the orthophoto resolution (`--orthophoto-resolution 2`) : ```bash docker run -ti --rm -v /datasets:/datasets opendronemap/odm --project-path /datasets project --dsm --orthophoto-resolution 2 ``` ## Viewing Results When the process finishes, the results will be organized as follows: |-- images/ |-- img-1234.jpg |-- ... |-- opensfm/ |-- see mapillary/opensfm repository for more info |-- odm_meshing/ |-- odm_mesh.ply # A 3D mesh |-- odm_texturing/ |-- odm_textured_model.obj # Textured mesh |-- odm_textured_model_geo.obj # Georeferenced textured mesh |-- odm_georeferencing/ |-- odm_georeferenced_model.laz # LAZ format point cloud |-- odm_orthophoto/ |-- odm_orthophoto.tif # Orthophoto GeoTiff You can use the following free and open source software to open the files generated in ODM: * .tif (GeoTIFF): [QGIS](http://www.qgis.org/) * .laz (Compressed LAS): [CloudCompare](https://www.cloudcompare.org/) * .obj (Wavefront OBJ), .ply (Stanford Triangle Format): [MeshLab](http://www.meshlab.net/) **Note!** Opening the .tif files generated by ODM in programs such as Photoshop or GIMP might not work (they are GeoTIFFs, not plain TIFFs). Use [QGIS](http://www.qgis.org/) instead. ## API ODM can be made accessible from a network via [NodeODM](https://github.com/OpenDroneMap/NodeODM). ## Documentation See http://docs.opendronemap.org for tutorials and more guides. ## Forum We have a vibrant [community forum](https://community.opendronemap.org/). You can [search it](https://community.opendronemap.org/search?expanded=true) for issues you might be having with ODM and you can post questions there. We encourage users of ODM to participate in the forum and to engage with fellow drone mapping users. ## Windows Setup ODM can be installed natively on Windows. Just download the latest setup from the [releases](https://github.com/OpenDroneMap/ODM/releases) page. After opening the ODM Console you can process datasets by typing: ```bash run C:\Users\youruser\datasets\project [--additional --parameters --here] ``` ## Snap Package ODM is now available as a Snap Package from the Snap Store. To install you may use the Snap Store (available itself as a Snap Package) or the command line: ```bash sudo snap install --edge opendronemap ``` To run, you will need a terminal window into which you can type: ```bash opendronemap # or snap run opendronemap # or /snap/bin/opendronemap ``` Snap packages will be kept up-to-date automatically, so you don't need to update ODM manually. ## GPU Acceleration ODM has support for doing SIFT feature extraction on a GPU, which is about 2x faster than the CPU on a typical consumer laptop. To use this feature, you need to use the `opendronemap/odm:gpu` docker image instead of `opendronemap/odm` and you need to pass the `--gpus all` flag: ``` docker run -ti --rm -v c:/Users/youruser/datasets:/datasets --gpus all opendronemap/odm:gpu --project-path /datasets project ``` When you run ODM, if the GPU is recognized, in the first few lines of output you should see: ``` [INFO] Writing exif overrides [INFO] Maximum photo dimensions: 4000px [INFO] Found GPU device: Intel(R) OpenCL HD Graphics [INFO] Using GPU for extracting SIFT features ``` The SIFT GPU implementation is CUDA-based, so should work with most NVIDIA graphics cards of the GTX 9xx Generation or newer. If you have an NVIDIA card, you can test that docker is recognizing the GPU by running: ``` docker run --rm --gpus all nvidia/cuda:10.0-base nvidia-smi ``` If you see an output that looks like this: ``` Fri Jul 24 18:51:55 2020 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 440.82 Driver Version: 440.82 CUDA Version: 10.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | ``` You're in good shape! See https://github.com/NVIDIA/nvidia-docker and https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker for information on docker/NVIDIA setup. ## WSL or WSL2 Install Note: This requires that you have installed WSL already by following [the instructions on Microsoft's Website](https://docs.microsoft.com/en-us/windows/wsl/install-win10). You can run ODM via WSL or WSL2 by downloading the `rootfs.tar.gz` file from [the releases page on GitHub](https://github.com/OpenDroneMap/ODM/releases). Once you have the file saved to your `Downloads` folder in Windows, open a PowerShell or CMD window by right-clicking the Flag Menu (bottom left by default) and selecting "Windows PowerShell", or alternatively by using the [Windows Terminal from the Windows Store](https://www.microsoft.com/store/productId/9N0DX20HK701). Inside a PowerShell window, or Windows Terminal running PowerShell, type the following: ```powershell # PowerShell wsl.exe --import ODM $env:APPDATA\ODM C:\path\to\your\Downloads\rootfs.tar.gz ``` Alternatively if you're using `CMD.exe` or the `CMD` support in Windows Terminal type: ```cmd # CMD wsl.exe --import ODM %APPDATA%\ODM C:\path\to\your\Downloads\rootfs.tar.gz ``` In either case, make sure you replace `C:\path\to\your\Downloads\rootfs.tar.gz` with the actual path to your `rootfs.tar.gz` file. This will save a new Hard Disk image to your Windows `AppData` folder at `C:\Users\username\AppData\roaming\ODM` (where `username` is your Username in Windows), and will set-up a new WSL "distro" called `ODM`. You may start the ODM distro by using the relevant option in the Windows Terminal (from the Windows Store) or by executing `wsl.exe -d ODM` in a PowerShell or CMD window. ODM is installed to the distro's `/code` directory. You may execute it with: ```bash /code/run.sh ``` ### Updating ODM in WSL The easiest way to update the installation of ODM is to download the new `rootfs.tar.gz` file and import it as another distro. You may then unregister the original instance the same way you delete ODM from WSL (see next heading). ### Deleting an ODM in WSL instance ```cmd wsl.exe --unregister ODM ``` Finally you'll want to delete the files by using your Windows File Manager (Explorer) to navigate to `%APPDATA%`, find the `ODM` directory, and delete it by dragging it to the recycle bin. To permanently delete it empty the recycle bin. If you have installed to a different directory by changing the `--import` command you ran to install you must use that directory name to delete the correct files. This is likely the case if you have multiple ODM installations or are updating an already-installed installation. ## Native Install (Ubuntu 21.04) You can run ODM natively on Ubuntu 21.04 (although we don't recommend it): ```bash git clone https://github.com/OpenDroneMap/ODM cd ODM bash configure.sh install ``` You can then process datasets with `./run.sh /datasets/odm_data_aukerman` ## Native Install (MacOS) You can run ODM natively on Intel/ARM MacOS. First install: * Xcode 13 (not 14, there's currently a bug) * [Homebrew](https://docs.brew.sh/Installation) Then Run: ```bash git clone https://github.com/OpenDroneMap/ODM cd ODM bash configure_macos.sh install ``` You can then process datasets with `./run.sh /datasets/odm_data_aukerman` This could be improved in the future. [Helps us create a Homebrew formula](https://github.com/OpenDroneMap/ODM/issues/1531). ### Updating a native installation When updating to a newer version of native ODM, it is recommended that you run: `bash configure.sh reinstall` to ensure all the dependent packages and modules get updated. ### Build Docker Images From Source If you want to rebuild your own docker image (if you have changed the source code, for example), from the ODM folder you can type: ```bash docker build -t my_odm_image --no-cache . ``` When building your own Docker image, if image size is of importance to you, you should use the ```--squash``` flag, like so: ```bash docker build --squash -t my_odm_image . ``` This will clean up intermediate steps in the Docker build process, resulting in a significantly smaller image (about half the size). Experimental flags need to be enabled in Docker to use the ```--squash``` flag. To enable this, insert the following into the file `/etc/docker/daemon.json`: ```json { "experimental": true } ``` After this, you must restart docker. ## Video Support Starting from version 3.0.4, ODM can automatically extract images from video files (.mp4, .mov, .lrv, .ts). Just place one or more video files into the `images` folder and run the program as usual. Subtitles files (.srt) with GPS information are also supported. Place .srt files in the `images` folder, making sure that the filenames match. For example, `my_video.mp4` ==> `my_video.srt` (case-sensitive). ## Developers Help improve our software! We welcome contributions from everyone, whether to add new features, improve speed, fix existing bugs or add support for more cameras. Check our [code of conduct](https://github.com/OpenDroneMap/documents/blob/master/CONDUCT.md), the [contributing guidelines](https://github.com/OpenDroneMap/documents/blob/master/CONTRIBUTING.md) and [how decisions are made](https://github.com/OpenDroneMap/documents/blob/master/GOVERNANCE.md#how-decisions-are-made). For Linux users, the easiest way to modify the software is to make sure docker is installed, clone the repository and then run from a shell: ```bash $ DATA=/path/to/datasets ./start-dev-env.sh ``` Where `/path/to/datasets` is a directory where you can place test datasets (it can also point to an empty directory if you don't have test datasets). Run configure to set up the required third party libraries: ```bash (odmdev) [user:/code] master+* ± bash configure.sh reinstall ``` You can now make changes to the ODM source. When you are ready to test the changes you can simply invoke: ```bash (odmdev) [user:/code] master+* ± ./run.sh --project-path /datasets mydataset ``` If you have questions, join the developer's chat at https://community.opendronemap.org/c/developers-chat/21 1. Try to keep commits clean and simple 2. Submit a pull request with detailed changes and test results 3. Have fun! ### Troubleshooting The dev environment makes use of `opendronemap/nodeodm` by default. You may want to run `docker pull opendronemap/nodeodm` before running `./start-dev-env.sh` to avoid using an old cached version. In order to make a clean build, remove `~/.odm-dev-home` and `ODM/.setupdevenv`. ## Credits ODM makes use of [several libraries](https://github.com/OpenDroneMap/ODM/blob/master/snap/snapcraft.yaml#L36) and other awesome open source projects to perform its tasks. Among them we'd like to highlight: - [OpenSfM](https://github.com/mapillary/OpenSfM) - [OpenMVS](https://github.com/cdcseacave/openMVS/) - [PDAL](https://github.com/PDAL/PDAL) - [Entwine](https://entwine.io/) - [MVS Texturing](https://github.com/nmoehrle/mvs-texturing) - [GRASS GIS](https://grass.osgeo.org/) - [GDAL](https://gdal.org/) - [PoissonRecon](https://github.com/mkazhdan/PoissonRecon) ## Citation > *OpenDroneMap Authors* ODM - A command line toolkit to generate maps, point clouds, 3D models and DEMs from drone, balloon or kite images. **OpenDroneMap/ODM GitHub Page** 2020; [https://github.com/OpenDroneMap/ODM](https://github.com/OpenDroneMap/ODM) ## Trademark See [Trademark Guidelines](https://github.com/OpenDroneMap/documents/blob/master/TRADEMARK.md)