kopia lustrzana https://github.com/OpenDroneMap/ODM
Use DSM's euclidean map for DTM merging, nearest neighbor interpolation in overlapping empty areas
Former-commit-id: a3f5aa4509
pull/1161/head
rodzic
e335dacd4f
commit
e9b28349c7
|
@ -1,5 +1,6 @@
|
|||
import math
|
||||
import numpy as np
|
||||
from scipy import ndimage
|
||||
import rasterio
|
||||
from rasterio.transform import Affine, rowcol
|
||||
from opendm import system
|
||||
|
@ -8,7 +9,7 @@ from opendm import log
|
|||
from opendm import io
|
||||
import os
|
||||
|
||||
def euclidean_merge_dems(input_dems, output_dem, creation_options={}):
|
||||
def euclidean_merge_dems(input_dems, output_dem, creation_options={}, euclidean_map_source=None):
|
||||
"""
|
||||
Based on https://github.com/mapbox/rio-merge-rgba
|
||||
and ideas from Anna Petrasova
|
||||
|
@ -40,7 +41,7 @@ def euclidean_merge_dems(input_dems, output_dem, creation_options={}):
|
|||
profile = first.profile
|
||||
|
||||
for dem in existing_dems:
|
||||
eumap = compute_euclidean_map(dem, io.related_file_path(dem, postfix=".euclideand"), overwrite=False)
|
||||
eumap = compute_euclidean_map(dem, io.related_file_path(dem, postfix=".euclideand", replace_base=euclidean_map_source), overwrite=False)
|
||||
if eumap and io.file_exists(eumap):
|
||||
inputs.append((dem, eumap))
|
||||
|
||||
|
@ -57,9 +58,6 @@ def euclidean_merge_dems(input_dems, output_dem, creation_options={}):
|
|||
xs = []
|
||||
ys = []
|
||||
for src_d, src_e in sources:
|
||||
if not same_bounds(src_d, src_e):
|
||||
raise ValueError("DEM and euclidean file must have the same bounds")
|
||||
|
||||
left, bottom, right, top = src_d.bounds
|
||||
xs.extend([left, right])
|
||||
ys.extend([bottom, top])
|
||||
|
@ -109,6 +107,7 @@ def euclidean_merge_dems(input_dems, output_dem, creation_options={}):
|
|||
|
||||
dstarr = np.zeros(dst_shape, dtype=dtype)
|
||||
distsum = np.zeros(dst_shape, dtype=dtype)
|
||||
small_distance = 0.001953125
|
||||
|
||||
for src_d, src_e in sources:
|
||||
# The full_cover behavior is problematic here as it includes
|
||||
|
@ -124,20 +123,26 @@ def euclidean_merge_dems(input_dems, output_dem, creation_options={}):
|
|||
nodata = src_d.nodatavals[0]
|
||||
|
||||
# Alternative, custom get_window using rounding
|
||||
src_window = tuple(zip(rowcol(
|
||||
src_window_d = tuple(zip(rowcol(
|
||||
src_d.transform, left, top, op=round, precision=precision
|
||||
), rowcol(
|
||||
src_d.transform, right, bottom, op=round, precision=precision
|
||||
)))
|
||||
|
||||
src_window_e = tuple(zip(rowcol(
|
||||
src_e.transform, left, top, op=round, precision=precision
|
||||
), rowcol(
|
||||
src_e.transform, right, bottom, op=round, precision=precision
|
||||
)))
|
||||
|
||||
temp_d = np.zeros(dst_shape, dtype=dtype)
|
||||
temp_d = src_d.read(
|
||||
out=temp_d, window=src_window, boundless=True, masked=False
|
||||
out=temp_d, window=src_window_d, boundless=True, masked=False
|
||||
)
|
||||
|
||||
temp_e = np.zeros(dst_shape, dtype=dtype)
|
||||
temp_e = src_e.read(
|
||||
out=temp_e, window=src_window, boundless=True, masked=False
|
||||
out=temp_e, window=src_window_e, boundless=True, masked=False
|
||||
)
|
||||
|
||||
# Set NODATA areas in the euclidean map to a very low value
|
||||
|
@ -146,7 +151,7 @@ def euclidean_merge_dems(input_dems, output_dem, creation_options={}):
|
|||
# are far away from NODATA areas
|
||||
# - Areas that have no overlap are included in the final result
|
||||
# even if they are very close to a NODATA cell
|
||||
temp_e[temp_e==0] = 0.001953125
|
||||
temp_e[temp_e==0] = small_distance
|
||||
temp_e[temp_d==nodata] = 0
|
||||
|
||||
np.multiply(temp_d, temp_e, out=temp_d)
|
||||
|
@ -154,22 +159,17 @@ def euclidean_merge_dems(input_dems, output_dem, creation_options={}):
|
|||
np.add(distsum, temp_e, out=distsum)
|
||||
|
||||
np.divide(dstarr, distsum, out=dstarr, where=distsum[0] != 0.0)
|
||||
|
||||
# Perform nearest neighbor interpolation on areas where two or more rasters overlap
|
||||
# but where both rasters have only interpolated data. This prevents the creation
|
||||
# of artifacts that average areas of interpolation.
|
||||
indices = ndimage.distance_transform_edt(np.logical_and(distsum < 1, distsum > small_distance),
|
||||
return_distances=False,
|
||||
return_indices=True)
|
||||
dstarr = dstarr[tuple(indices)]
|
||||
|
||||
dstarr[dstarr == 0.0] = src_nodata
|
||||
|
||||
dstrast.write(dstarr, window=dst_window)
|
||||
|
||||
return output_dem
|
||||
|
||||
def same_bounds(rast_a, rast_b, EPS = 1E-5):
|
||||
"""
|
||||
Compares two raster bounds and returns true if they are equal
|
||||
(up to a float precision threshold)
|
||||
"""
|
||||
a = rast_a.bounds
|
||||
b = rast_b.bounds
|
||||
|
||||
return (abs(a.bottom - b.bottom) < EPS) and \
|
||||
(abs(a.top - b.top) < EPS) and \
|
||||
(abs(a.left - b.left) < EPS) and \
|
||||
(abs(a.right - b.right) < EPS)
|
||||
|
|
@ -58,7 +58,7 @@ def find(filename, folder):
|
|||
return '/'.join((root, filename)) if filename in files else None
|
||||
|
||||
|
||||
def related_file_path(input_file_path, prefix="", postfix=""):
|
||||
def related_file_path(input_file_path, prefix="", postfix="", replace_base=None):
|
||||
"""
|
||||
For example: related_file_path("/path/to/file.ext", "a.", ".b")
|
||||
--> "/path/to/a.file.b.ext"
|
||||
|
@ -72,6 +72,9 @@ def related_file_path(input_file_path, prefix="", postfix=""):
|
|||
# basename = file
|
||||
# ext = .ext
|
||||
|
||||
if replace_base is not None:
|
||||
basename = replace_base
|
||||
|
||||
return os.path.join(path, "{}{}{}{}".format(prefix, basename, postfix, ext))
|
||||
|
||||
def path_or_json_string_to_dict(string):
|
||||
|
|
|
@ -58,7 +58,8 @@ class ODMDEMStage(types.ODM_Stage):
|
|||
self.rerun():
|
||||
|
||||
products = []
|
||||
if args.dsm: products.append('dsm')
|
||||
|
||||
if args.dsm or (args.dtm and args.dem_euclidean_map): products.append('dsm')
|
||||
if args.dtm: products.append('dtm')
|
||||
|
||||
resolution = gsd.cap_resolution(args.dem_resolution, tree.opensfm_reconstruction, gsd_error_estimate=-3, ignore_gsd=args.ignore_gsd)
|
||||
|
|
|
@ -314,7 +314,14 @@ class ODMMergeStage(types.ODM_Stage):
|
|||
|
||||
# Merge
|
||||
dem_vars = utils.get_dem_vars(args)
|
||||
euclidean_merge_dems(all_dems, dem_file, dem_vars)
|
||||
eu_map_source = None # Default
|
||||
|
||||
# Use DSM's euclidean map for DTMs
|
||||
# (requires the DSM to be computed)
|
||||
if human_name == "DTM":
|
||||
eu_map_source = "dsm"
|
||||
|
||||
euclidean_merge_dems(all_dems, dem_file, dem_vars, euclidean_map_source=eu_map_source)
|
||||
|
||||
if io.file_exists(dem_file):
|
||||
# Crop
|
||||
|
|
Ładowanie…
Reference in New Issue