kopia lustrzana https://github.com/OpenDroneMap/ODM
rodzic
3d30907f01
commit
d712c16571
104
opendm/remote.py
104
opendm/remote.py
|
@ -1,14 +1,17 @@
|
|||
import time
|
||||
import datetime
|
||||
import os
|
||||
import threading
|
||||
from opendm import log
|
||||
from pyodm import Node, exceptions
|
||||
from pyodm.utils import AtomicCounter
|
||||
|
||||
try:
|
||||
import queue
|
||||
except ImportError:
|
||||
import Queue as queue
|
||||
|
||||
class HybridDistributedExecutor:
|
||||
class LocalRemoteExecutor:
|
||||
"""
|
||||
A class for performing OpenSfM reconstructions and full ODM pipeline executions
|
||||
using a mix of local and remote processing. Tasks are executed locally one at a time
|
||||
|
@ -19,14 +22,14 @@ class HybridDistributedExecutor:
|
|||
def __init__(self, nodeUrl):
|
||||
self.node = Node.from_url(nodeUrl)
|
||||
|
||||
log.ODM_INFO("Initializing hybrid distributed executor using cluster node %s" % nodeUrl)
|
||||
log.ODM_INFO("LRE: Initializing using cluster node %s" % nodeUrl)
|
||||
try:
|
||||
odm_version = self.node.info().odm_version
|
||||
log.ODM_INFO("Node is online and running ODM version: %s" % odm_version)
|
||||
log.ODM_INFO("LRE: Node is online and running ODM version: %s" % odm_version)
|
||||
except exceptions.NodeConnectionError:
|
||||
log.ODM_WARNING("The node seems to be offline! We'll still process the dataset, but it's going to run entirely locally.")
|
||||
log.ODM_WARNING("LRE: The node seems to be offline! We'll still process the dataset, but it's going to run entirely locally.")
|
||||
except Exception as e:
|
||||
log.ODM_ERROR("An unexpected problem happened while opening the node connection: %s" % str(e))
|
||||
log.ODM_ERROR("LRE: An unexpected problem happened while opening the node connection: %s" % str(e))
|
||||
exit(1)
|
||||
|
||||
def set_projects(self, paths):
|
||||
|
@ -40,46 +43,73 @@ class HybridDistributedExecutor:
|
|||
class nonloc:
|
||||
error = None
|
||||
local_is_processing = False
|
||||
semaphore = None
|
||||
|
||||
node_task_limit = AtomicCounter(0)
|
||||
|
||||
# Create queue
|
||||
q = queue.Queue()
|
||||
for pp in self.project_paths:
|
||||
log.ODM_DEBUG("LRE: Adding to queue %s" % pp)
|
||||
q.put(ReconstructionTask(pp))
|
||||
|
||||
def handle_result(task, local, error = None):
|
||||
if error:
|
||||
print("ERROR!!! " + str(error))
|
||||
if isinstance(error, NodeTaskLimitReachedException) and not nonloc.semaphore:
|
||||
nonloc.semaphore = threading.Semaphore(node_task_limit.value)
|
||||
log.ODM_DEBUG("LRE: Node task limit reached. Setting semaphore to %s" % node_task_limit.value)
|
||||
for i in range(node_task_limit.value):
|
||||
nonloc.semaphore.acquire()
|
||||
|
||||
log.ODM_WARNING("LRE: %s failed with: %s" % (task, str(error)))
|
||||
|
||||
if task.retries < task.max_retries:
|
||||
# Put task back in queue
|
||||
task.retries += 1
|
||||
task.wait_until = datetime.datetime.now() + datetime.timedelta(seconds=task.retries * task.retry_timeout)
|
||||
log.ODM_DEBUG("LRE: Re-queueing %s (retries: %s)" % (task, task.retries))
|
||||
q.put(task)
|
||||
else:
|
||||
nonloc.error = e
|
||||
|
||||
if local:
|
||||
nonloc.local_is_processing = False
|
||||
else:
|
||||
if not local:
|
||||
node_task_limit.increment(-1)
|
||||
|
||||
log.ODM_INFO("LRE: %s finished successfully" % task)
|
||||
|
||||
if local:
|
||||
nonloc.local_is_processing = False
|
||||
|
||||
if nonloc.semaphore: nonloc.semaphore.release()
|
||||
q.task_done()
|
||||
|
||||
def worker():
|
||||
while True:
|
||||
# If we've found a limit on the maximum number of tasks
|
||||
# a node can process, we block until some tasks have completed
|
||||
if nonloc.semaphore: nonloc.semaphore.acquire()
|
||||
|
||||
task = q.get()
|
||||
if task is None or nonloc.error is not None:
|
||||
q.task_done()
|
||||
if nonloc.semaphore: nonloc.semaphore.release()
|
||||
break
|
||||
|
||||
|
||||
if not nonloc.local_is_processing:
|
||||
# Process local
|
||||
nonloc.local_is_processing = True
|
||||
task.process(True, handle_result)
|
||||
try:
|
||||
nonloc.local_is_processing = True
|
||||
task.process(True, handle_result)
|
||||
except Exception as e:
|
||||
handle_result(task, True, e)
|
||||
else:
|
||||
# Process remote
|
||||
now = datetime.datetime.now()
|
||||
if task.wait_until > now:
|
||||
time.sleep((task.wait_until - now).seconds)
|
||||
try:
|
||||
task.process(False, handle_result)
|
||||
node_task_limit.increment() # Called after upload, but before processing is started
|
||||
except Exception as e:
|
||||
handle_result(task, False, e)
|
||||
|
||||
task.process(False, handle_result)
|
||||
|
||||
t = threading.Thread(target=worker)
|
||||
t.start()
|
||||
|
@ -101,8 +131,11 @@ class HybridDistributedExecutor:
|
|||
return
|
||||
|
||||
|
||||
class NodeTaskLimitReachedException(Exception):
|
||||
pass
|
||||
|
||||
class Task:
|
||||
def __init__(self, project_path, max_retries=10, retry_timeout=10):
|
||||
def __init__(self, project_path, max_retries=10, retry_timeout=1):
|
||||
self.project_path = project_path
|
||||
self.wait_until = datetime.datetime.now() # Don't run this task until a certain time
|
||||
self.max_retries = max_retries
|
||||
|
@ -114,27 +147,52 @@ class Task:
|
|||
def handle_result(error = None):
|
||||
done(self, local, error)
|
||||
|
||||
t = threading.Thread(target=getattr(self, 'process_local' if local else 'process_remote'), args=(handle_result, ))
|
||||
t.start()
|
||||
log.ODM_INFO("LRE: About to process %s %s" % (self, 'locally' if local else 'remotely'))
|
||||
|
||||
if local:
|
||||
t = threading.Thread(target=self.process_local, args=(handle_result, ))
|
||||
t.start()
|
||||
else:
|
||||
now = datetime.datetime.now()
|
||||
if self.wait_until > now:
|
||||
wait_for = (self.wait_until - now).seconds
|
||||
log.ODM_DEBUG("LRE: Waiting %s seconds before processing %s" % (wait_for, self))
|
||||
time.sleep(wait_for)
|
||||
|
||||
# TODO: we could consider uploading multiple tasks
|
||||
# in parallel. But since we are using the same node
|
||||
# perhaps this wouldn't be a big speedup.
|
||||
self.process_remote(handle_result) # Block until upload is complete
|
||||
|
||||
def process_local(self, done):
|
||||
raise NotImplementedError()
|
||||
|
||||
def process_remote(self, done):
|
||||
raise NotImplementedError()
|
||||
|
||||
def __str__(self):
|
||||
return os.path.basename(self.project_path)
|
||||
|
||||
class ReconstructionTask(Task):
|
||||
|
||||
def process_local(self, done):
|
||||
print("Process local: " + self.project_path)
|
||||
time.sleep(0.1)
|
||||
time.sleep(10)
|
||||
done()
|
||||
|
||||
def process_remote(self, done):
|
||||
time.sleep(0.3)
|
||||
|
||||
def test():
|
||||
time.sleep(4)
|
||||
done()
|
||||
|
||||
if self.project_path == '/datasets/brighton/opensfm/submodels/submodel_0001':
|
||||
done(Exception("TEST EXCEPTION!" + self.project_path))
|
||||
elif self.project_path == '/datasets/brighton/opensfm/submodels/submodel_0002':
|
||||
done(NodeTaskLimitReachedException("Limit reached"))
|
||||
elif self.project_path == '/datasets/brighton/opensfm/submodels/submodel_0003':
|
||||
threading.Thread(target=test).start()
|
||||
elif self.project_path == '/datasets/brighton/opensfm/submodels/submodel_0004':
|
||||
threading.Thread(target=test).start()
|
||||
else:
|
||||
print("Process remote: " + self.project_path)
|
||||
done()
|
||||
done()
|
||||
|
|
Ładowanie…
Reference in New Issue