kopia lustrzana https://github.com/OpenDroneMap/ODM
rodzic
1da14d9506
commit
8d519e0fe1
|
@ -0,0 +1,134 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
class Calibrator:
|
||||
"""Camera calibration using a chessboard pattern."""
|
||||
|
||||
def __init__(self, pattern_width, pattern_height, motion_threshold=0.05):
|
||||
"""Init the calibrator.
|
||||
|
||||
The parameter motion_threshold determines the minimal motion required
|
||||
to add a new frame to the calibration data, as a ratio of image width.
|
||||
"""
|
||||
self.pattern_size = (pattern_width, pattern_height)
|
||||
self.motion_threshold = motion_threshold
|
||||
self.pattern_points = np.array([
|
||||
(i, j, 0.0)
|
||||
for j in range(pattern_height)
|
||||
for i in range(pattern_width)
|
||||
], dtype=np.float32)
|
||||
self.object_points = []
|
||||
self.image_points = []
|
||||
|
||||
def process_image(self, image, window_name):
|
||||
"""Find corners of an image and store them internally."""
|
||||
if len(image.shape) == 3:
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
else:
|
||||
gray = image
|
||||
|
||||
h, w = gray.shape
|
||||
self.image_size = (w, h)
|
||||
|
||||
found, corners = cv2.findChessboardCorners(gray, self.pattern_size)
|
||||
|
||||
if found:
|
||||
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
|
||||
cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)
|
||||
self._add_points(corners.reshape(-1, 2))
|
||||
|
||||
if window_name:
|
||||
cv2.drawChessboardCorners(image, self.pattern_size, corners, found)
|
||||
cv2.imshow(window_name, image)
|
||||
|
||||
return found
|
||||
|
||||
def calibrate(self):
|
||||
"""Run calibration using points extracted by process_image."""
|
||||
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(
|
||||
self.object_points, self.image_points, self.image_size, None, None)
|
||||
return rms, camera_matrix, dist_coefs
|
||||
|
||||
def _add_points(self, image_points):
|
||||
if self.image_points:
|
||||
delta = np.fabs(image_points - self.image_points[-1]).max()
|
||||
should_add = (delta > self.image_size[0] * self.motion_threshold)
|
||||
else:
|
||||
should_add = True
|
||||
|
||||
if should_add:
|
||||
self.image_points.append(image_points)
|
||||
self.object_points.append(self.pattern_points)
|
||||
|
||||
|
||||
def video_frames(filename):
|
||||
"""Yield frames in a video."""
|
||||
cap = cv2.VideoCapture(args.video)
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if ret:
|
||||
yield frame
|
||||
else:
|
||||
break
|
||||
cap.release()
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Camera calibration from video of a chessboard.")
|
||||
parser.add_argument(
|
||||
'video',
|
||||
help="video of the checkerboard")
|
||||
parser.add_argument(
|
||||
'--output',
|
||||
default='calibration',
|
||||
help="base name for the output files")
|
||||
parser.add_argument(
|
||||
'--size',
|
||||
default='8x6',
|
||||
help="size of the chessboard")
|
||||
parser.add_argument(
|
||||
'--visual',
|
||||
action='store_true',
|
||||
help="display images while calibrating")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
|
||||
pattern_size = [int(i) for i in args.size.split('x')]
|
||||
calibrator = Calibrator(pattern_size[0], pattern_size[1])
|
||||
|
||||
window_name = None
|
||||
if args.visual:
|
||||
window_name = 'Chessboard detection'
|
||||
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
|
||||
|
||||
print "kept\tcurrent\tchessboard found"
|
||||
|
||||
for i, frame in enumerate(video_frames(args.video)):
|
||||
found = calibrator.process_image(frame, window_name)
|
||||
|
||||
print "{}\t{}\t{} \r".format(
|
||||
len(calibrator.image_points), i, found),
|
||||
sys.stdout.flush()
|
||||
|
||||
if args.visual:
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
print
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
rms, camera_matrix, dist_coefs = calibrator.calibrate()
|
||||
|
||||
print "RMS:", rms
|
||||
print "camera matrix:\n", camera_matrix
|
||||
print "distortion coefficients: ", dist_coefs.ravel()
|
Ładowanie…
Reference in New Issue