Add calibration from video script

Former-commit-id: a205c38a5b
pull/1161/head
Pau Gargallo 2016-05-19 16:51:08 +02:00
rodzic 1da14d9506
commit 8d519e0fe1
1 zmienionych plików z 134 dodań i 0 usunięć

Wyświetl plik

@ -0,0 +1,134 @@
#!/usr/bin/env python
import argparse
import sys
import numpy as np
import cv2
class Calibrator:
"""Camera calibration using a chessboard pattern."""
def __init__(self, pattern_width, pattern_height, motion_threshold=0.05):
"""Init the calibrator.
The parameter motion_threshold determines the minimal motion required
to add a new frame to the calibration data, as a ratio of image width.
"""
self.pattern_size = (pattern_width, pattern_height)
self.motion_threshold = motion_threshold
self.pattern_points = np.array([
(i, j, 0.0)
for j in range(pattern_height)
for i in range(pattern_width)
], dtype=np.float32)
self.object_points = []
self.image_points = []
def process_image(self, image, window_name):
"""Find corners of an image and store them internally."""
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
h, w = gray.shape
self.image_size = (w, h)
found, corners = cv2.findChessboardCorners(gray, self.pattern_size)
if found:
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)
self._add_points(corners.reshape(-1, 2))
if window_name:
cv2.drawChessboardCorners(image, self.pattern_size, corners, found)
cv2.imshow(window_name, image)
return found
def calibrate(self):
"""Run calibration using points extracted by process_image."""
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(
self.object_points, self.image_points, self.image_size, None, None)
return rms, camera_matrix, dist_coefs
def _add_points(self, image_points):
if self.image_points:
delta = np.fabs(image_points - self.image_points[-1]).max()
should_add = (delta > self.image_size[0] * self.motion_threshold)
else:
should_add = True
if should_add:
self.image_points.append(image_points)
self.object_points.append(self.pattern_points)
def video_frames(filename):
"""Yield frames in a video."""
cap = cv2.VideoCapture(args.video)
while True:
ret, frame = cap.read()
if ret:
yield frame
else:
break
cap.release()
def parse_arguments():
parser = argparse.ArgumentParser(
description="Camera calibration from video of a chessboard.")
parser.add_argument(
'video',
help="video of the checkerboard")
parser.add_argument(
'--output',
default='calibration',
help="base name for the output files")
parser.add_argument(
'--size',
default='8x6',
help="size of the chessboard")
parser.add_argument(
'--visual',
action='store_true',
help="display images while calibrating")
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
pattern_size = [int(i) for i in args.size.split('x')]
calibrator = Calibrator(pattern_size[0], pattern_size[1])
window_name = None
if args.visual:
window_name = 'Chessboard detection'
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
print "kept\tcurrent\tchessboard found"
for i, frame in enumerate(video_frames(args.video)):
found = calibrator.process_image(frame, window_name)
print "{}\t{}\t{} \r".format(
len(calibrator.image_points), i, found),
sys.stdout.flush()
if args.visual:
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print
cv2.destroyAllWindows()
rms, camera_matrix, dist_coefs = calibrator.calibrate()
print "RMS:", rms
print "camera matrix:\n", camera_matrix
print "distortion coefficients: ", dist_coefs.ravel()