kopia lustrzana https://github.com/OpenDroneMap/ODM
commit
6887f44bda
|
@ -0,0 +1,31 @@
|
|||
# Visible Vegetation Indexes
|
||||
|
||||
This script produces a Vegetation Index raster from a RGB orthophoto (odm_orthophoto.tif in your project)
|
||||
|
||||
## Requirements
|
||||
* rasterio (pip install rasterio)
|
||||
* numpy python package (included in ODM build)
|
||||
|
||||
## Usage
|
||||
```
|
||||
vegind.py <orthophoto.tif> index
|
||||
|
||||
positional arguments:
|
||||
<orthophoto.tif> The RGB orthophoto. Must be a GeoTiff.
|
||||
index Index identifier. Allowed values: ngrdi, tgi, vari
|
||||
```
|
||||
Output will be generated with index suffix in the same directory as input.
|
||||
|
||||
## Examples
|
||||
|
||||
`python vegind.py /path/to/odm_orthophoto.tif tgi`
|
||||
|
||||
Orthophoto photo of Koniaków grass field and forest in QGIS: 
|
||||
The Triangular Greenness Index output in QGIS (with a spectral pseudocolor): 
|
||||
Visible Atmospheric Resistant Index: 
|
||||
Normalized green-red difference index: 
|
||||
|
||||
## Bibliography
|
||||
|
||||
1. Hunt, E. Raymond, et al. "A Visible Band Index for Remote Sensing Leaf Chlorophyll Content At the Canopy Scale." ITC journal 21(2013): 103-112. doi: 10.1016/j.jag.2012.07.020
|
||||
(https://doi.org/10.1016/j.jag.2012.07.020)
|
|
@ -0,0 +1,94 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
import rasterio, os, sys
|
||||
import numpy as np
|
||||
|
||||
class bcolors:
|
||||
OKBLUE = '\033[94m'
|
||||
OKGREEN = '\033[92m'
|
||||
WARNING = '\033[93m'
|
||||
FAIL = '\033[91m'
|
||||
ENDC = '\033[0m'
|
||||
BOLD = '\033[1m'
|
||||
UNDERLINE = '\033[4m'
|
||||
|
||||
try:
|
||||
file = sys.argv[1]
|
||||
typ = sys.argv[2]
|
||||
(fileRoot, fileExt) = os.path.splitext(file)
|
||||
outFileName = fileRoot + "_" + typ + fileExt
|
||||
isinstance(typ, ['vari', 'tgi', 'ngrdi'])
|
||||
except (TypeError, IndexError, NameError):
|
||||
print bcolors.FAIL + 'Arguments messed up. Check arguments order and index name' + bcolors.ENDC
|
||||
print 'Usage: ./vegind.py orto index'
|
||||
print ' orto - filepath to RGB orthophoto'
|
||||
print ' index - Vegetation Index'
|
||||
print bcolors.OKGREEN + 'Available indexes: vari, ngrdi, tgi' + bcolors.ENDC
|
||||
sys.exit()
|
||||
|
||||
|
||||
def calcNgrdi(red, green):
|
||||
"""
|
||||
Normalized green red difference index
|
||||
Tucker,C.J.,1979.
|
||||
Red and photographic infrared linear combinations for monitoring vegetation.
|
||||
Remote Sensing of Environment 8, 127–150
|
||||
:param red: red visible channel
|
||||
:param green: green visible channel
|
||||
:return: ngrdi index array
|
||||
"""
|
||||
mask = np.not_equal(np.add(red,green), 0.0)
|
||||
return np.choose(mask, (-9999.0, np.true_divide(
|
||||
np.subtract(green,red),
|
||||
np.add(red,green))))
|
||||
|
||||
def calcVari(red,green,blue):
|
||||
"""
|
||||
Calculates Visible Atmospheric Resistant Index
|
||||
Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D., 2002.
|
||||
Novel algorithms for remote estimation of vegetation fraction.
|
||||
Remote Sensing of Environment 80, 76–87.
|
||||
:param red: red visible channel
|
||||
:param green: green visible channel
|
||||
:param blue: blue visible channel
|
||||
:return: vari index array, that will be saved to tiff
|
||||
"""
|
||||
mask = np.not_equal(np.subtract(np.add(green,red),blue), 0.0)
|
||||
return np.choose(mask, (-9999.0, np.true_divide(np.subtract(green,red),np.subtract(np.add(green,red),blue))))
|
||||
|
||||
def calcTgi(red,green,blue):
|
||||
"""
|
||||
Calculates Triangular Greenness Index
|
||||
Hunt, E. Raymond Jr.; Doraiswamy, Paul C.; McMurtrey, James E.; Daughtry, Craig S.T.; Perry, Eileen M.; and Akhmedov, Bakhyt,
|
||||
A visible band index for remote sensing leaf chlorophyll content at the canopy scale (2013).
|
||||
Publications from USDA-ARS / UNL Faculty. Paper 1156.
|
||||
http://digitalcommons.unl.edu/usdaarsfacpub/1156
|
||||
:param red: red channel
|
||||
:param green: green channel
|
||||
:param blue: blue channel
|
||||
:return: tgi index array, that will be saved to tiff
|
||||
"""
|
||||
mask = np.not_equal(green-red+blue-255.0, 0.0)
|
||||
return np.choose(mask, (-9999.0, np.subtract(green, np.multiply(0.39,red), np.multiply(0.61, blue))))
|
||||
|
||||
try:
|
||||
with rasterio.Env():
|
||||
ds = rasterio.open(file)
|
||||
profile = ds.profile
|
||||
profile.update(dtype=rasterio.float32, count=1, nodata=-9999)
|
||||
red = np.float32(ds.read(1))
|
||||
green = np.float32(ds.read(2))
|
||||
blue = np.float32(ds.read(3))
|
||||
np.seterr(divide='ignore', invalid='ignore')
|
||||
if typ == 'ngrdi':
|
||||
indeks = calcNgrdi(red,green)
|
||||
elif typ == 'vari':
|
||||
indeks = calcVari(red, green, blue)
|
||||
elif typ == 'tgi':
|
||||
indeks = calcTgi(red, green, blue)
|
||||
|
||||
with rasterio.open(outFileName, 'w', **profile) as dst:
|
||||
dst.write(indeks.astype(rasterio.float32), 1)
|
||||
except rasterio.errors.RasterioIOError:
|
||||
print bcolors.FAIL + 'Orthophoto file not found or access denied' + bcolors.ENDC
|
||||
sys.exit()
|
Ładowanie…
Reference in New Issue