kopia lustrzana https://github.com/OpenDroneMap/ODM
Added visibility test to orthorectification tool
rodzic
cbb62bfab0
commit
673a25b79c
|
@ -2,7 +2,7 @@
|
|||
|
||||

|
||||
|
||||
This tool is capable of orthorectifying individual images (or all images) from an ODM reconstruction. It does not account for visibility occlusion, so you will get artifacts near buildings (help us improve this?).
|
||||
This tool is capable of orthorectifying individual images (or all images) from an existing ODM reconstruction.
|
||||
|
||||

|
||||
|
||||
|
@ -17,7 +17,7 @@ docker run -ti --rm -v /home/youruser/datasets:/datasets opendronemap/odm --proj
|
|||
You can run the orthorectification module by running:
|
||||
|
||||
```
|
||||
docker run -ti --rm -v /home/youruser/datasets:/datasets --entrypoint /code/contrib/orthorectify/orthorectify.py opendronemap/odm /datasets/project
|
||||
docker run -ti --rm -v /home/youruser/datasets:/datasets --entrypoint /code/contrib/orthorectify/run.sh opendronemap/odm /datasets/project
|
||||
```
|
||||
|
||||
This will start the orthorectification process for all images in the dataset. See additional flags you can pass at the end of the command above:
|
||||
|
@ -26,7 +26,8 @@ This will start the orthorectification process for all images in the dataset. Se
|
|||
usage: orthorectify.py [-h] [--dem DEM] [--no-alpha NO_ALPHA]
|
||||
[--interpolation {nearest,bilinear}]
|
||||
[--outdir OUTDIR] [--image-list IMAGE_LIST]
|
||||
[--images IMAGES]
|
||||
[--images IMAGES] [--threads THREADS]
|
||||
[--skip-visibility-test SKIP_VISIBILITY_TEST]
|
||||
dataset
|
||||
|
||||
Orthorectification Tool
|
||||
|
@ -53,6 +54,9 @@ optional arguments:
|
|||
--images IMAGES Comma-separated list of filenames to
|
||||
rectify. Use as an alternative to --image-
|
||||
list. Default: process all images.
|
||||
--skip-visibility-test SKIP_VISIBILITY_TEST
|
||||
Skip visibility testing (faster but leaves
|
||||
artifacts due to relief displacement)
|
||||
```
|
||||
|
||||
## Roadmap
|
||||
|
@ -60,5 +64,6 @@ optional arguments:
|
|||
Help us improve this module! We could add:
|
||||
|
||||
- [ ] GPU support for faster processing
|
||||
- [ ] Visibility checks
|
||||
- [ ] Merging of multiple orthorectified images (blending, filtering, seam leveling)
|
||||
- [ ] Faster visibility test
|
||||
- [ ] Different methods for orthorectification (direct)
|
|
@ -6,12 +6,14 @@ import os
|
|||
import sys
|
||||
sys.path.insert(0, os.path.join("..", "..", os.path.dirname(__file__)))
|
||||
|
||||
from math import sqrt
|
||||
import rasterio
|
||||
import numpy as np
|
||||
import numpy.ma as ma
|
||||
import multiprocessing
|
||||
import argparse
|
||||
import functools
|
||||
from skimage.draw import line
|
||||
from opensfm import dataset
|
||||
|
||||
default_dem_path = "odm_dem/dsm.tif"
|
||||
|
@ -50,7 +52,9 @@ parser.add_argument('--threads',
|
|||
type=int,
|
||||
default=multiprocessing.cpu_count(),
|
||||
help="Number of CPU processes to use. Default: %(default)s")
|
||||
|
||||
parser.add_argument('--skip-visibility-test',
|
||||
type=bool,
|
||||
help="Skip visibility testing (faster but leaves artifacts due to relief displacement)")
|
||||
args = parser.parse_args()
|
||||
|
||||
dataset_path = args.dataset
|
||||
|
@ -112,11 +116,16 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
dem_has_nodata = dem_raster.profile.get('nodata') is not None
|
||||
|
||||
if dem_has_nodata:
|
||||
dem_min_value = ma.array(dem, mask=dem==dem_raster.nodata).min()
|
||||
m = ma.array(dem, mask=dem==dem_raster.nodata)
|
||||
dem_min_value = m.min()
|
||||
dem_max_value = m.max()
|
||||
else:
|
||||
dem_min_value = dem.min()
|
||||
|
||||
dem_max_value = dem.max()
|
||||
|
||||
print("DEM Minimum: %s" % dem_min_value)
|
||||
print("DEM Maximum: %s" % dem_max_value)
|
||||
|
||||
h, w = dem.shape
|
||||
|
||||
crs = dem_raster.profile.get('crs')
|
||||
|
@ -132,18 +141,18 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
exit(1)
|
||||
|
||||
with open(coords_file) as f:
|
||||
line = f.readline() # discard
|
||||
l = f.readline() # discard
|
||||
|
||||
# second line is a northing/easting offset
|
||||
line = f.readline().rstrip()
|
||||
dem_offset_x, dem_offset_y = map(float, line.split(" "))
|
||||
l = f.readline().rstrip()
|
||||
dem_offset_x, dem_offset_y = map(float, l.split(" "))
|
||||
|
||||
print("DEM offset: (%s, %s)" % (dem_offset_x, dem_offset_y))
|
||||
|
||||
print("DEM dimensions: %sx%s pixels" % (w, h))
|
||||
|
||||
|
||||
# Read reconstruction
|
||||
udata = dataset.UndistortedDataSet(dataset.DataSet(os.path.join(dataset_path, "opensfm")))
|
||||
udata = dataset.UndistortedDataSet(dataset.DataSet(os.path.join(dataset_path, "opensfm")), undistorted_data_path=os.path.join(dataset_path, "opensfm", "undistorted"))
|
||||
reconstructions = udata.load_undistorted_reconstruction()
|
||||
if len(reconstructions) == 0:
|
||||
raise Exception("No reconstructions available")
|
||||
|
@ -160,6 +169,8 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
|
||||
r = shot.pose.get_rotation_matrix()
|
||||
Xs, Ys, Zs = shot.pose.get_origin()
|
||||
cam_grid_y, cam_grid_x = dem_raster.index(Xs + dem_offset_x, Ys + dem_offset_y)
|
||||
|
||||
a1 = r[0][0]
|
||||
b1 = r[0][1]
|
||||
c1 = r[0][2]
|
||||
|
@ -170,15 +181,26 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
b3 = r[2][1]
|
||||
c3 = r[2][2]
|
||||
|
||||
if not args.skip_visibility_test:
|
||||
distance_map = np.full((h, w), np.nan)
|
||||
|
||||
for j in range(0, h):
|
||||
for i in range(0, w):
|
||||
distance_map[j][i] = sqrt((cam_grid_x - i) ** 2 + (cam_grid_y - j) ** 2)
|
||||
distance_map[distance_map==0] = 1e-7
|
||||
|
||||
print("Camera pose: (%f, %f, %f)" % (Xs, Ys, Zs))
|
||||
|
||||
img_h, img_w, num_bands = shot_image.shape
|
||||
half_img_w = (img_w - 1) / 2.0
|
||||
half_img_h = (img_h - 1) / 2.0
|
||||
print("Image dimensions: %sx%s pixels" % (img_w, img_h))
|
||||
f = shot.camera.focal * max(img_h, img_w)
|
||||
has_nodata = dem_raster.profile.get('nodata') is not None
|
||||
|
||||
def process_pixels(step):
|
||||
imgout = np.full((num_bands, dem_bbox_h, dem_bbox_w), np.nan)
|
||||
|
||||
minx = dem_bbox_w
|
||||
miny = dem_bbox_h
|
||||
maxx = 0
|
||||
|
@ -192,13 +214,14 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
im_i = i - dem_bbox_minx
|
||||
|
||||
# World coordinates
|
||||
Xa, Ya = dem_raster.xy(j, i)
|
||||
Za = dem[j][i]
|
||||
|
||||
# Skip nodata
|
||||
if has_nodata and Za == dem_raster.nodata:
|
||||
continue
|
||||
|
||||
Xa, Ya = dem_raster.xy(j, i)
|
||||
|
||||
# Remove offset (our cameras don't have the geographic offset)
|
||||
Xa -= dem_offset_x
|
||||
Ya -= dem_offset_y
|
||||
|
@ -209,11 +232,27 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
dz = (Za - Zs)
|
||||
|
||||
den = a3 * dx + b3 * dy + c3 * dz
|
||||
x = (img_w - 1) / 2.0 - (f * (a1 * dx + b1 * dy + c1 * dz) / den)
|
||||
y = (img_h - 1) / 2.0 - (f * (a2 * dx + b2 * dy + c2 * dz) / den)
|
||||
x = half_img_w - (f * (a1 * dx + b1 * dy + c1 * dz) / den)
|
||||
y = half_img_h - (f * (a2 * dx + b2 * dy + c2 * dz) / den)
|
||||
|
||||
if x >= 0 and y >= 0 and x <= img_w - 1 and y <= img_h - 1:
|
||||
|
||||
# Visibility test
|
||||
if not args.skip_visibility_test:
|
||||
check_dem_points = np.column_stack(line(i, j, cam_grid_x, cam_grid_y))
|
||||
check_dem_points = check_dem_points[np.all(np.logical_and(np.array([0, 0]) <= check_dem_points, check_dem_points < [w, h]), axis=1)]
|
||||
|
||||
visible = True
|
||||
for p in check_dem_points:
|
||||
ray_z = Zs + (distance_map[p[1]][p[0]] / distance_map[j][i]) * dz
|
||||
if ray_z > dem_max_value:
|
||||
break
|
||||
|
||||
if dem[p[1]][p[0]] > ray_z:
|
||||
visible = False
|
||||
break
|
||||
if not visible:
|
||||
continue
|
||||
|
||||
if interpolation == 'bilinear':
|
||||
xi = img_w - 1 - x
|
||||
yi = img_h - 1 - y
|
||||
|
@ -291,6 +330,7 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
|
||||
# Merge image
|
||||
imgout, _ = results[0]
|
||||
|
||||
for j in range(dem_bbox_miny, dem_bbox_maxy + 1):
|
||||
im_j = j - dem_bbox_miny
|
||||
resimg, _ = results[j % max_workers]
|
||||
|
@ -308,10 +348,10 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
miny = min(bounds[1], miny)
|
||||
maxx = max(bounds[2], maxx)
|
||||
maxy = max(bounds[3], maxy)
|
||||
|
||||
|
||||
print("Output bounds: (%s, %s), (%s, %s) pixels" % (minx, miny, maxx, maxy))
|
||||
if minx <= maxx and miny <= maxy:
|
||||
imgout = imgout[:,miny:maxy,minx:maxx]
|
||||
imgout = imgout[:,miny:maxy+1,minx:maxx+1]
|
||||
|
||||
if with_alpha:
|
||||
alpha = np.zeros((imgout.shape[1], imgout.shape[2]), dtype=np.uint8)
|
||||
|
|
Ładowanie…
Reference in New Issue