Fix homography calculations

pull/1740/head
Piero Toffanin 2024-06-28 17:12:53 +00:00
rodzic 75c363994c
commit 5c68df75b3
3 zmienionych plików z 33 dodań i 25 usunięć

Wyświetl plik

@ -1 +1 @@
3.5.2
3.5.3

Wyświetl plik

@ -427,14 +427,14 @@ def find_ecc_homography(image_gray, align_image_gray, number_of_iterations=1000,
pyramid_levels = 0
h,w = image_gray.shape
max_dim = max(h, w)
downscale = 0
max_size = 1280
max_size = 2048
while max_dim / (2**downscale) > max_size:
downscale += 1
if max_dim > max_size:
if max_dim == w:
f = max_size / w
else:
f = max_size / h
if downscale > 0:
f = 1 / (2**downscale)
image_gray = cv2.resize(image_gray, None, fx=f, fy=f, interpolation=cv2.INTER_AREA)
h,w = image_gray.shape
@ -445,6 +445,7 @@ def find_ecc_homography(image_gray, align_image_gray, number_of_iterations=1000,
pyramid_levels += 1
log.ODM_INFO("Pyramid levels: %s" % pyramid_levels)
log.ODM_INFO("Downscale: %s" % downscale)
# Quick check on size
if align_image_gray.shape[0] != image_gray.shape[0]:
@ -473,7 +474,6 @@ def find_ecc_homography(image_gray, align_image_gray, number_of_iterations=1000,
# Define the motion model, scale the initial warp matrix to smallest level
warp_matrix = np.eye(3, 3, dtype=np.float32)
warp_matrix = warp_matrix * np.array([[1,1,2],[1,1,2],[0.5,0.5,1]], dtype=np.float32)**(1-(pyramid_levels+1))
for level in range(pyramid_levels+1):
ig = gradient(gaussian(image_gray_pyr[level]))
@ -495,14 +495,16 @@ def find_ecc_homography(image_gray, align_image_gray, number_of_iterations=1000,
if level != pyramid_levels:
log.ODM_INFO("Could not compute ECC warp_matrix at pyramid level %s, resetting matrix" % level)
warp_matrix = np.eye(3, 3, dtype=np.float32)
warp_matrix = warp_matrix * np.array([[1,1,2],[1,1,2],[0.5,0.5,1]], dtype=np.float32)**(1-(pyramid_levels+1))
else:
raise e
if level != pyramid_levels:
warp_matrix = warp_matrix * np.array([[1,1,2],[1,1,2],[0.5,0.5,1]], dtype=np.float32)
return warp_matrix
if downscale > 0:
return warp_matrix * (np.array([[1,1,2],[1,1,2],[0.5,0.5,1]], dtype=np.float32) ** downscale)
else:
return warp_matrix
def find_features_homography(image_gray, align_image_gray, feature_retention=0.7, min_match_count=10):
@ -512,13 +514,15 @@ def find_features_homography(image_gray, align_image_gray, feature_retention=0.7
h,w = image_gray.shape
max_dim = max(h, w)
downscale = 0
max_size = 2048
if max_dim > max_size:
if max_dim == w:
f = max_size / w
else:
f = max_size / h
max_size = 4096
while max_dim / (2**downscale) > max_size:
downscale += 1
log.ODM_INFO("Downscale: %s" % downscale)
if downscale > 0:
f = 1 / (2**downscale)
image_gray = cv2.resize(image_gray, None, fx=f, fy=f, interpolation=cv2.INTER_AREA)
h,w = image_gray.shape
@ -570,7 +574,11 @@ def find_features_homography(image_gray, align_image_gray, feature_retention=0.7
# Find homography
h, _ = cv2.findHomography(points_image, points_align_image, cv2.RANSAC)
return h
if downscale > 0:
return h * (np.array([[1,1,2],[1,1,2],[0.5,0.5,1]], dtype=np.float32) ** downscale)
else:
return h
def gradient(im, ksize=5):
im = local_normalize(im)

Wyświetl plik

@ -29,14 +29,14 @@ class ODMOpenSfMStage(types.ODM_Stage):
raise system.ExitException('Not enough photos in photos array to start OpenSfM')
octx = OSFMContext(tree.opensfm)
octx.setup(args, tree.dataset_raw, reconstruction=reconstruction, rerun=self.rerun())
octx.photos_to_metadata(photos, args.rolling_shutter, args.rolling_shutter_readout, self.rerun())
self.update_progress(20)
octx.feature_matching(self.rerun())
self.update_progress(30)
octx.create_tracks(self.rerun())
octx.reconstruct(args.rolling_shutter, reconstruction.is_georeferenced() and (not args.sfm_no_partial), self.rerun())
octx.extract_cameras(tree.path("cameras.json"), self.rerun())
# octx.setup(args, tree.dataset_raw, reconstruction=reconstruction, rerun=self.rerun())
# octx.photos_to_metadata(photos, args.rolling_shutter, args.rolling_shutter_readout, self.rerun())
# self.update_progress(20)
# octx.feature_matching(self.rerun())
# self.update_progress(30)
# octx.create_tracks(self.rerun())
# octx.reconstruct(args.rolling_shutter, reconstruction.is_georeferenced() and (not args.sfm_no_partial), self.rerun())
# octx.extract_cameras(tree.path("cameras.json"), self.rerun())
self.update_progress(70)
def cleanup_disk_space():