Limit indirect coordinate search to bounding box estimate

pull/1253/head
Piero Toffanin 2021-03-30 20:20:56 +00:00
rodzic b3e3d04713
commit 48f1c1ea7d
1 zmienionych plików z 83 dodań i 19 usunięć

Wyświetl plik

@ -8,8 +8,10 @@ sys.path.insert(0, os.path.join("..", "..", os.path.dirname(__file__)))
import rasterio
import numpy as np
import numpy.ma as ma
import multiprocessing
import argparse
import functools
from opensfm import dataset
default_dem_path = "odm_dem/dsm.tif"
@ -103,6 +105,14 @@ def bilinear_interpolate(im, x, y):
print("Reading DEM: %s" % dem_path)
with rasterio.open(dem_path) as dem_raster:
dem = dem_raster.read()[0]
dem_has_nodata = dem_raster.profile.get('nodata') is not None
if dem_has_nodata:
dem_min_value = ma.array(dem, mask=dem==dem_raster.nodata).min()
else:
dem_min_value = dem.min()
print("DEM Minimum: %s" % dem_min_value)
h, w = dem.shape
crs = dem_raster.profile.get('crs')
@ -146,6 +156,15 @@ with rasterio.open(dem_path) as dem_raster:
r = shot.pose.get_rotation_matrix()
Xs, Ys, Zs = shot.pose.get_origin()
a1 = r[0][0]
b1 = r[0][1]
c1 = r[0][2]
a2 = r[1][0]
b2 = r[1][1]
c2 = r[1][2]
a3 = r[2][0]
b3 = r[2][1]
c3 = r[2][2]
print("Camera pose: (%f, %f, %f)" % (Xs, Ys, Zs))
@ -155,15 +174,19 @@ with rasterio.open(dem_path) as dem_raster:
has_nodata = dem_raster.profile.get('nodata') is not None
def process_pixels(step):
imgout = np.full((num_bands, h, w), np.nan)
minx = w
miny = h
imgout = np.full((num_bands, dem_bbox_h, dem_bbox_w), np.nan)
minx = dem_bbox_w
miny = dem_bbox_h
maxx = 0
maxy = 0
for j in range(h):
for j in range(dem_bbox_miny, dem_bbox_maxy + 1):
if j % max_workers == step:
for i in range(w):
im_j = j - dem_bbox_miny
for i in range(dem_bbox_minx, dem_bbox_maxx + 1):
im_i = i - dem_bbox_minx
# World coordinates
Xa, Ya = dem_raster.xy(j, i)
Za = dem[j][i]
@ -181,9 +204,9 @@ with rasterio.open(dem_path) as dem_raster:
dy = (Ya - Ys)
dz = (Za - Zs)
den = r[2][0] * dx + r[2][1] * dy + r[2][2] * dz
x = (img_w - 1) / 2.0 - (f * (r[0][0] * dx + r[0][1] * dy + r[0][2] * dz) / den)
y = (img_h - 1) / 2.0 - (f * (r[1][0] * dx + r[1][1] * dy + r[1][2] * dz) / den)
den = a3 * dx + b3 * dy + c3 * dz
x = (img_w - 1) / 2.0 - (f * (a1 * dx + b1 * dy + c1 * dz) / den)
y = (img_h - 1) / 2.0 - (f * (a2 * dx + b2 * dy + c2 * dz) / den)
if x >= 0 and y >= 0 and x <= img_w - 1 and y <= img_h - 1:
@ -202,31 +225,72 @@ with rasterio.open(dem_path) as dem_raster:
# valid sample values.
if not np.all(values == 0):
minx = min(minx, i)
miny = min(miny, j)
maxx = max(maxx, i)
maxy = max(maxy, j)
minx = min(minx, im_i)
miny = min(miny, im_j)
maxx = max(maxx, im_i)
maxy = max(maxy, im_j)
for b in range(num_bands):
imgout[b][j][i] = values[b]
imgout[b][im_j][im_i] = values[b]
# for b in range(num_bands):
# imgout[b][j][i] = 255
# minx = min(minx, im_i)
# miny = min(miny, im_j)
# maxx = max(maxx, im_i)
# maxy = max(maxy, im_j)
# imgout[b][im_j][im_i] = 255
return (imgout, (minx, miny, maxx, maxy))
# Compute bounding box of image coverage
# assuming a flat plane at Z = plane_z
# (Otherwise we have to scan the entire DSM)
# The Xa,Ya equations are just derived from the colinearity equations
# solving for Xa and Ya instead of x,y
def dem_coordinates(cpx, cpy):
"""
:param cpx principal point X (image coordinates)
:param cpy principal point Y (image coordinates)
"""
Za = dem_min_value
m = (a3*b1*cpy - a1*b3*cpy - (a3*b2 - a2*b3)*cpx - (a2*b1 - a1*b2)*f)
Xa = dem_offset_x + (m*Xs + (b3*c1*cpy - b1*c3*cpy - (b3*c2 - b2*c3)*cpx - (b2*c1 - b1*c2)*f)*Za - (b3*c1*cpy - b1*c3*cpy - (b3*c2 - b2*c3)*cpx - (b2*c1 - b1*c2)*f)*Zs)/m
Ya = dem_offset_y + (m*Ys - (a3*c1*cpy - a1*c3*cpy - (a3*c2 - a2*c3)*cpx - (a2*c1 - a1*c2)*f)*Za + (a3*c1*cpy - a1*c3*cpy - (a3*c2 - a2*c3)*cpx - (a2*c1 - a1*c2)*f)*Zs)/m
y, x = dem_raster.index(Xa, Ya)
return (x, y)
dem_ul = dem_coordinates(-(img_w - 1) / 2.0, -(img_h - 1) / 2.0)
dem_ur = dem_coordinates((img_w - 1) / 2.0, -(img_h - 1) / 2.0)
dem_lr = dem_coordinates((img_w - 1) / 2.0, (img_h - 1) / 2.0)
dem_ll = dem_coordinates(-(img_w - 1) / 2.0, (img_h - 1) / 2.0)
dem_bbox = [dem_ul, dem_ur, dem_lr, dem_ll]
dem_bbox_x = np.array(list(map(lambda xy: xy[0], dem_bbox)))
dem_bbox_y = np.array(list(map(lambda xy: xy[1], dem_bbox)))
dem_bbox_minx = min(w - 1, max(0, dem_bbox_x.min()))
dem_bbox_miny = min(h - 1, max(0, dem_bbox_y.min()))
dem_bbox_maxx = min(w - 1, max(0, dem_bbox_x.max()))
dem_bbox_maxy = min(h - 1, max(0, dem_bbox_y.max()))
dem_bbox_w = 1 + dem_bbox_maxx - dem_bbox_minx
dem_bbox_h = 1 + dem_bbox_maxy - dem_bbox_miny
print("Iterating over DEM box: [(%s, %s), (%s, %s)] (%sx%s pixels)" % (dem_bbox_minx, dem_bbox_miny, dem_bbox_maxx, dem_bbox_maxy, dem_bbox_w, dem_bbox_h))
with multiprocessing.Pool(max_workers) as p:
results = p.map(process_pixels, range(max_workers))
# Merge image
imgout, _ = results[0]
for j in range(h):
for j in range(dem_bbox_miny, dem_bbox_maxy + 1):
i_j = j - dem_bbox_miny
resimg, _ = results[j % max_workers]
for b in range(num_bands):
imgout[b][j] = resimg[b][j]
imgout[b][i_j] = resimg[b][i_j]
# Merge bounds
minx = w
miny = h
minx = dem_bbox_w
miny = dem_bbox_h
maxx = 0
maxy = 0
@ -250,7 +314,7 @@ with rasterio.open(dem_path) as dem_raster:
imgout = imgout.astype(shot_image.dtype)
dem_transform = dem_raster.profile['transform']
offset_x, offset_y = dem_raster.xy(miny, minx, offset='ul')
offset_x, offset_y = dem_raster.xy(dem_bbox_miny + miny, dem_bbox_minx + minx, offset='ul')
profile = {
'driver': 'GTiff',