kopia lustrzana https://github.com/OpenDroneMap/ODM
Limit indirect coordinate search to bounding box estimate
rodzic
b3e3d04713
commit
48f1c1ea7d
|
@ -8,8 +8,10 @@ sys.path.insert(0, os.path.join("..", "..", os.path.dirname(__file__)))
|
|||
|
||||
import rasterio
|
||||
import numpy as np
|
||||
import numpy.ma as ma
|
||||
import multiprocessing
|
||||
import argparse
|
||||
import functools
|
||||
from opensfm import dataset
|
||||
|
||||
default_dem_path = "odm_dem/dsm.tif"
|
||||
|
@ -103,6 +105,14 @@ def bilinear_interpolate(im, x, y):
|
|||
print("Reading DEM: %s" % dem_path)
|
||||
with rasterio.open(dem_path) as dem_raster:
|
||||
dem = dem_raster.read()[0]
|
||||
dem_has_nodata = dem_raster.profile.get('nodata') is not None
|
||||
|
||||
if dem_has_nodata:
|
||||
dem_min_value = ma.array(dem, mask=dem==dem_raster.nodata).min()
|
||||
else:
|
||||
dem_min_value = dem.min()
|
||||
|
||||
print("DEM Minimum: %s" % dem_min_value)
|
||||
h, w = dem.shape
|
||||
|
||||
crs = dem_raster.profile.get('crs')
|
||||
|
@ -146,6 +156,15 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
|
||||
r = shot.pose.get_rotation_matrix()
|
||||
Xs, Ys, Zs = shot.pose.get_origin()
|
||||
a1 = r[0][0]
|
||||
b1 = r[0][1]
|
||||
c1 = r[0][2]
|
||||
a2 = r[1][0]
|
||||
b2 = r[1][1]
|
||||
c2 = r[1][2]
|
||||
a3 = r[2][0]
|
||||
b3 = r[2][1]
|
||||
c3 = r[2][2]
|
||||
|
||||
print("Camera pose: (%f, %f, %f)" % (Xs, Ys, Zs))
|
||||
|
||||
|
@ -155,15 +174,19 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
has_nodata = dem_raster.profile.get('nodata') is not None
|
||||
|
||||
def process_pixels(step):
|
||||
imgout = np.full((num_bands, h, w), np.nan)
|
||||
minx = w
|
||||
miny = h
|
||||
imgout = np.full((num_bands, dem_bbox_h, dem_bbox_w), np.nan)
|
||||
minx = dem_bbox_w
|
||||
miny = dem_bbox_h
|
||||
maxx = 0
|
||||
maxy = 0
|
||||
|
||||
for j in range(h):
|
||||
for j in range(dem_bbox_miny, dem_bbox_maxy + 1):
|
||||
if j % max_workers == step:
|
||||
for i in range(w):
|
||||
im_j = j - dem_bbox_miny
|
||||
|
||||
for i in range(dem_bbox_minx, dem_bbox_maxx + 1):
|
||||
im_i = i - dem_bbox_minx
|
||||
|
||||
# World coordinates
|
||||
Xa, Ya = dem_raster.xy(j, i)
|
||||
Za = dem[j][i]
|
||||
|
@ -181,9 +204,9 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
dy = (Ya - Ys)
|
||||
dz = (Za - Zs)
|
||||
|
||||
den = r[2][0] * dx + r[2][1] * dy + r[2][2] * dz
|
||||
x = (img_w - 1) / 2.0 - (f * (r[0][0] * dx + r[0][1] * dy + r[0][2] * dz) / den)
|
||||
y = (img_h - 1) / 2.0 - (f * (r[1][0] * dx + r[1][1] * dy + r[1][2] * dz) / den)
|
||||
den = a3 * dx + b3 * dy + c3 * dz
|
||||
x = (img_w - 1) / 2.0 - (f * (a1 * dx + b1 * dy + c1 * dz) / den)
|
||||
y = (img_h - 1) / 2.0 - (f * (a2 * dx + b2 * dy + c2 * dz) / den)
|
||||
|
||||
if x >= 0 and y >= 0 and x <= img_w - 1 and y <= img_h - 1:
|
||||
|
||||
|
@ -202,31 +225,72 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
# valid sample values.
|
||||
|
||||
if not np.all(values == 0):
|
||||
minx = min(minx, i)
|
||||
miny = min(miny, j)
|
||||
maxx = max(maxx, i)
|
||||
maxy = max(maxy, j)
|
||||
minx = min(minx, im_i)
|
||||
miny = min(miny, im_j)
|
||||
maxx = max(maxx, im_i)
|
||||
maxy = max(maxy, im_j)
|
||||
|
||||
for b in range(num_bands):
|
||||
imgout[b][j][i] = values[b]
|
||||
imgout[b][im_j][im_i] = values[b]
|
||||
|
||||
# for b in range(num_bands):
|
||||
# imgout[b][j][i] = 255
|
||||
# minx = min(minx, im_i)
|
||||
# miny = min(miny, im_j)
|
||||
# maxx = max(maxx, im_i)
|
||||
# maxy = max(maxy, im_j)
|
||||
# imgout[b][im_j][im_i] = 255
|
||||
return (imgout, (minx, miny, maxx, maxy))
|
||||
|
||||
# Compute bounding box of image coverage
|
||||
# assuming a flat plane at Z = plane_z
|
||||
# (Otherwise we have to scan the entire DSM)
|
||||
# The Xa,Ya equations are just derived from the colinearity equations
|
||||
# solving for Xa and Ya instead of x,y
|
||||
def dem_coordinates(cpx, cpy):
|
||||
"""
|
||||
:param cpx principal point X (image coordinates)
|
||||
:param cpy principal point Y (image coordinates)
|
||||
"""
|
||||
Za = dem_min_value
|
||||
m = (a3*b1*cpy - a1*b3*cpy - (a3*b2 - a2*b3)*cpx - (a2*b1 - a1*b2)*f)
|
||||
Xa = dem_offset_x + (m*Xs + (b3*c1*cpy - b1*c3*cpy - (b3*c2 - b2*c3)*cpx - (b2*c1 - b1*c2)*f)*Za - (b3*c1*cpy - b1*c3*cpy - (b3*c2 - b2*c3)*cpx - (b2*c1 - b1*c2)*f)*Zs)/m
|
||||
Ya = dem_offset_y + (m*Ys - (a3*c1*cpy - a1*c3*cpy - (a3*c2 - a2*c3)*cpx - (a2*c1 - a1*c2)*f)*Za + (a3*c1*cpy - a1*c3*cpy - (a3*c2 - a2*c3)*cpx - (a2*c1 - a1*c2)*f)*Zs)/m
|
||||
|
||||
y, x = dem_raster.index(Xa, Ya)
|
||||
return (x, y)
|
||||
|
||||
dem_ul = dem_coordinates(-(img_w - 1) / 2.0, -(img_h - 1) / 2.0)
|
||||
dem_ur = dem_coordinates((img_w - 1) / 2.0, -(img_h - 1) / 2.0)
|
||||
dem_lr = dem_coordinates((img_w - 1) / 2.0, (img_h - 1) / 2.0)
|
||||
dem_ll = dem_coordinates(-(img_w - 1) / 2.0, (img_h - 1) / 2.0)
|
||||
dem_bbox = [dem_ul, dem_ur, dem_lr, dem_ll]
|
||||
dem_bbox_x = np.array(list(map(lambda xy: xy[0], dem_bbox)))
|
||||
dem_bbox_y = np.array(list(map(lambda xy: xy[1], dem_bbox)))
|
||||
|
||||
dem_bbox_minx = min(w - 1, max(0, dem_bbox_x.min()))
|
||||
dem_bbox_miny = min(h - 1, max(0, dem_bbox_y.min()))
|
||||
dem_bbox_maxx = min(w - 1, max(0, dem_bbox_x.max()))
|
||||
dem_bbox_maxy = min(h - 1, max(0, dem_bbox_y.max()))
|
||||
|
||||
dem_bbox_w = 1 + dem_bbox_maxx - dem_bbox_minx
|
||||
dem_bbox_h = 1 + dem_bbox_maxy - dem_bbox_miny
|
||||
|
||||
print("Iterating over DEM box: [(%s, %s), (%s, %s)] (%sx%s pixels)" % (dem_bbox_minx, dem_bbox_miny, dem_bbox_maxx, dem_bbox_maxy, dem_bbox_w, dem_bbox_h))
|
||||
|
||||
with multiprocessing.Pool(max_workers) as p:
|
||||
results = p.map(process_pixels, range(max_workers))
|
||||
|
||||
# Merge image
|
||||
imgout, _ = results[0]
|
||||
for j in range(h):
|
||||
for j in range(dem_bbox_miny, dem_bbox_maxy + 1):
|
||||
i_j = j - dem_bbox_miny
|
||||
resimg, _ = results[j % max_workers]
|
||||
for b in range(num_bands):
|
||||
imgout[b][j] = resimg[b][j]
|
||||
imgout[b][i_j] = resimg[b][i_j]
|
||||
|
||||
# Merge bounds
|
||||
minx = w
|
||||
miny = h
|
||||
minx = dem_bbox_w
|
||||
miny = dem_bbox_h
|
||||
maxx = 0
|
||||
maxy = 0
|
||||
|
||||
|
@ -250,7 +314,7 @@ with rasterio.open(dem_path) as dem_raster:
|
|||
imgout = imgout.astype(shot_image.dtype)
|
||||
|
||||
dem_transform = dem_raster.profile['transform']
|
||||
offset_x, offset_y = dem_raster.xy(miny, minx, offset='ul')
|
||||
offset_x, offset_y = dem_raster.xy(dem_bbox_miny + miny, dem_bbox_minx + minx, offset='ul')
|
||||
|
||||
profile = {
|
||||
'driver': 'GTiff',
|
||||
|
|
Ładowanie…
Reference in New Issue