kopia lustrzana https://github.com/OpenDroneMap/ODM
Add planar reconstruction config, plane.py
rodzic
3b53dd7cd0
commit
47eb29f31c
|
@ -232,8 +232,8 @@ def config(argv=None, parser=None):
|
|||
metavar='<string>',
|
||||
action=StoreValue,
|
||||
default='incremental',
|
||||
choices=['incremental', 'triangulation'],
|
||||
help=('Choose the structure from motion algorithm. For aerial datasets, if camera GPS positions and angles are available, triangulation can generate better results. '
|
||||
choices=['incremental', 'triangulation', 'planar'],
|
||||
help=('Choose the structure from motion algorithm. For aerial datasets, if camera GPS positions and angles are available, triangulation can generate better results. For planar scenes captured at fixed altitude with nadir-only images, planar can be much faster. '
|
||||
'Can be one of: %(choices)s. Default: '
|
||||
'%(default)s'))
|
||||
|
||||
|
|
|
@ -0,0 +1,208 @@
|
|||
import numpy as np
|
||||
import random
|
||||
import math
|
||||
import os
|
||||
|
||||
# https://stackoverflow.com/questions/38754668/plane-fitting-in-a-3d-point-cloud
|
||||
|
||||
def PCA(data, correlation = False, sort = True):
|
||||
""" Applies Principal Component Analysis to the data
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data: array
|
||||
The array containing the data. The array must have NxM dimensions, where each
|
||||
of the N rows represents a different individual record and each of the M columns
|
||||
represents a different variable recorded for that individual record.
|
||||
array([
|
||||
[V11, ... , V1m],
|
||||
...,
|
||||
[Vn1, ... , Vnm]])
|
||||
|
||||
correlation(Optional) : bool
|
||||
Set the type of matrix to be computed (see Notes):
|
||||
If True compute the correlation matrix.
|
||||
If False(Default) compute the covariance matrix.
|
||||
|
||||
sort(Optional) : bool
|
||||
Set the order that the eigenvalues/vectors will have
|
||||
If True(Default) they will be sorted (from higher value to less).
|
||||
If False they won't.
|
||||
Returns
|
||||
-------
|
||||
eigenvalues: (1,M) array
|
||||
The eigenvalues of the corresponding matrix.
|
||||
|
||||
eigenvector: (M,M) array
|
||||
The eigenvectors of the corresponding matrix.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The correlation matrix is a better choice when there are different magnitudes
|
||||
representing the M variables. Use covariance matrix in other cases.
|
||||
|
||||
"""
|
||||
|
||||
mean = np.mean(data, axis=0)
|
||||
|
||||
data_adjust = data - mean
|
||||
|
||||
#: the data is transposed due to np.cov/corrcoef syntax
|
||||
if correlation:
|
||||
|
||||
matrix = np.corrcoef(data_adjust.T)
|
||||
|
||||
else:
|
||||
matrix = np.cov(data_adjust.T)
|
||||
|
||||
eigenvalues, eigenvectors = np.linalg.eig(matrix)
|
||||
|
||||
if sort:
|
||||
#: sort eigenvalues and eigenvectors
|
||||
sort = eigenvalues.argsort()[::-1]
|
||||
eigenvalues = eigenvalues[sort]
|
||||
eigenvectors = eigenvectors[:,sort]
|
||||
|
||||
return eigenvalues, eigenvectors
|
||||
|
||||
def best_fitting_plane(points, equation=False):
|
||||
""" Computes the best fitting plane of the given points
|
||||
|
||||
Parameters
|
||||
----------
|
||||
points: array
|
||||
The x,y,z coordinates corresponding to the points from which we want
|
||||
to define the best fitting plane. Expected format:
|
||||
array([
|
||||
[x1,y1,z1],
|
||||
...,
|
||||
[xn,yn,zn]])
|
||||
|
||||
equation(Optional) : bool
|
||||
Set the oputput plane format:
|
||||
If True return the a,b,c,d coefficients of the plane.
|
||||
If False(Default) return 1 Point and 1 Normal vector.
|
||||
Returns
|
||||
-------
|
||||
a, b, c, d : float
|
||||
The coefficients solving the plane equation.
|
||||
|
||||
or
|
||||
|
||||
point, normal: array
|
||||
The plane defined by 1 Point and 1 Normal vector. With format:
|
||||
array([Px,Py,Pz]), array([Nx,Ny,Nz])
|
||||
|
||||
"""
|
||||
|
||||
w, v = PCA(points)
|
||||
|
||||
#: the normal of the plane is the last eigenvector
|
||||
normal = v[:,2]
|
||||
|
||||
#: get a point from the plane
|
||||
point = np.mean(points, axis=0)
|
||||
|
||||
|
||||
if equation:
|
||||
a, b, c = normal
|
||||
d = -(np.dot(normal, point))
|
||||
return a, b, c, d
|
||||
|
||||
else:
|
||||
return point, normal
|
||||
|
||||
def ransac_max_iterations(points, inliers, failure_probability):
|
||||
if len(inliers) >= len(points):
|
||||
return 0
|
||||
inlier_ratio = float(len(inliers)) / len(points)
|
||||
n = 3
|
||||
return math.log(failure_probability) / math.log(1.0 - inlier_ratio ** n)
|
||||
|
||||
|
||||
def ransac_best_fitting_plane(points):
|
||||
if len(points) < 3:
|
||||
raise Exception("Cannot estimate plane with less than 3 points: %s" % str(points))
|
||||
|
||||
max_iterations = 1000
|
||||
threshold = 1.2
|
||||
best_error = np.inf
|
||||
best_model = None
|
||||
best_inliers = []
|
||||
i = 0
|
||||
while i < max_iterations:
|
||||
samples = points[random.sample(range(len(points)), 3), :]
|
||||
model = np.array(best_fitting_plane(samples, equation=True))
|
||||
normal = model[0:3]
|
||||
normal_norm = np.linalg.norm(normal) + 1e-10
|
||||
|
||||
s = points.shape[:-1] + (1,)
|
||||
hpts = np.hstack((points, np.ones(s)))
|
||||
|
||||
errors = np.abs(model.T.dot(hpts.T)) / normal_norm
|
||||
errors[errors < threshold] = 0.0
|
||||
errors[errors >= threshold] = threshold + 0.1
|
||||
inliers = np.flatnonzero(np.fabs(errors) < threshold)
|
||||
error = np.fabs(errors).clip(0, threshold).sum()
|
||||
if len(inliers) and error < best_error:
|
||||
best_error = error
|
||||
best_model = model
|
||||
best_inliers = inliers
|
||||
max_iterations = min(
|
||||
max_iterations, ransac_max_iterations(points, best_inliers, 0.01)
|
||||
)
|
||||
i += 1
|
||||
|
||||
return best_fitting_plane(points[best_inliers])
|
||||
|
||||
|
||||
def get_z_from_XY_plane(x, y, minz, maxz, plane_normal, plane_center):
|
||||
minz -= 1e-6
|
||||
maxz += 1e-6
|
||||
|
||||
b = minz - maxz
|
||||
|
||||
d = minz * plane_normal[2] - maxz * plane_normal[2]
|
||||
if d == 0:
|
||||
return 0
|
||||
|
||||
o = np.array([x,y,maxz])
|
||||
t = (plane_center.dot(plane_normal) - plane_normal.dot(o)) / d
|
||||
|
||||
return maxz + b * t
|
||||
|
||||
def write_plane_ply(shots, plane_point, plane_normal, output_dir):
|
||||
# Find reconstruction X/Y boundaries on the plane based on camera shots
|
||||
minx, miny, minz, maxx, maxy, maxz = np.inf, np.inf, np.inf, -np.inf, -np.inf, -np.inf
|
||||
|
||||
for shot in shots:
|
||||
print(dir(shot))
|
||||
coords = shot.coordinates
|
||||
if coords[0] < minx:
|
||||
minx = coords[0]
|
||||
if coords[0] > maxx:
|
||||
maxx = coords[0]
|
||||
if coords[1] < miny:
|
||||
miny = coords[1]
|
||||
if coords[1] > maxy:
|
||||
maxy = coords[1]
|
||||
if coords[2] < minz:
|
||||
minz = coords[2]
|
||||
if coords[2] > maxx:
|
||||
maxx = coords[2]
|
||||
|
||||
# Create 4 corners points
|
||||
points = np.array([
|
||||
[x, y, get_z_from_XY_plane(x, y, minz, maxz, plane_normal, plane_point)] for x,y in [[minx, miny], [minx, maxy], [maxx, miny], [maxx, maxy]]
|
||||
])
|
||||
print(points)
|
||||
with open(os.path.join(output_dir, "plane.ply"), "wb") as fout:
|
||||
fout.write("ply\n".encode())
|
||||
fout.write("format binary_little_endian 1.0\n".encode())
|
||||
fout.write("element vertex 202141\n".encode())
|
||||
fout.write("property float32 x\n".encode())
|
||||
fout.write("property float32 y\n".encode())
|
||||
fout.write("property float32 z\n".encode())
|
||||
fout.write("element face 397578\n".encode())
|
||||
fout.write("property list uint8 uint32 vertex_indices\n".encode())
|
||||
fout.write("end_header\n".encode())
|
Ładowanie…
Reference in New Issue