kopia lustrzana https://github.com/OpenDroneMap/ODM
31 wiersze
1.1 KiB
Markdown
31 wiersze
1.1 KiB
Markdown
|
# NDVI
|
||
|
|
||
|
This script produces a NDVI raster from a CIR orthophoto (odm_orthophoto.tif in your project)
|
||
|
|
||
|
## Requirements
|
||
|
* python_gdal package from apt
|
||
|
* numpy python package (included in ODM build)
|
||
|
|
||
|
## Usage
|
||
|
```
|
||
|
ndvi.py [-h] [--overwrite] <orthophoto.tif> N N <outfile.tif>
|
||
|
|
||
|
positional arguments:
|
||
|
<orthophoto.tif> The CIR orthophoto. Must be a GeoTiff.
|
||
|
N NIR band number
|
||
|
N Vis band number
|
||
|
<outfile.tif> The output file. Also must be in GeoTiff format
|
||
|
|
||
|
optional arguments:
|
||
|
-h, --help show this help message and exit
|
||
|
--overwrite, -o Will overwrite output file if it exists.
|
||
|
```
|
||
|
|
||
|
**Argument order matters! NIR first, then VIS**
|
||
|
|
||
|
## Examples:
|
||
|
Use the [Seneca](https://github.com/OpenDroneMap/odm_data_seneca) dataset for a good working CIR. The band order for that set is NIR-G-B, so you will want to use bands 1 and 2 for this script. After running ODM, the command goes as follows:
|
||
|
|
||
|
`python ndvi.py /path/to/odm_orthophoto.tif 1 2 /path/to/ndvi.tif`
|
||
|
|
||
|
The output in QGIS (with a spectral pseudocolor): ![](http://i.imgur.com/TdLECII.png)
|