OpenDroneMap-ODM/opendm/multispectral.py

153 wiersze
5.3 KiB
Python
Czysty Zwykły widok Historia

from opendm import dls
import math
import numpy as np
from opendm import log
# Loosely based on https://github.com/micasense/imageprocessing/blob/master/micasense/utils.py
def dn_to_radiance(photo, image):
"""
Convert Digital Number values to Radiance values
:param photo ODM_Photo
:param image numpy array containing image data
:return numpy array with radiance image values
"""
image = image.astype("float32")
if len(image.shape) != 3:
raise ValueError("Image should have shape length of 3 (got: %s)" % len(image.shape))
# Handle thermal bands (experimental)
if photo.band_name == 'LWIR':
image -= (273.15 * 100.0) # Convert Kelvin to Celsius
image *= 0.01
return image
# All others
a1, a2, a3 = photo.get_radiometric_calibration()
dark_level = photo.get_dark_level()
exposure_time = photo.exposure_time
gain = photo.get_gain()
photometric_exp = photo.get_photometric_exposure()
if a1 is None and photometric_exp is None:
log.ODM_WARNING("Cannot perform radiometric calibration, no FNumber/Exposure Time or Radiometric Calibration EXIF tags found in %s. Using Digital Number." % photo.filename)
return image
if a1 is None and photometric_exp is not None:
a1 = photometric_exp
V, x, y = vignette_map(photo)
if x is None:
x, y = np.meshgrid(np.arange(photo.width), np.arange(photo.height))
if dark_level is not None:
image -= dark_level
# Normalize DN to 0 - 1.0
bit_depth_max = photo.get_bit_depth_max()
if bit_depth_max:
image /= bit_depth_max
if V is not None:
# vignette correction
V = np.repeat(V[:, :, np.newaxis], image.shape[2], axis=2)
image *= V
if exposure_time and a2 is not None and a3 is not None:
# row gradient correction
R = 1.0 / (1.0 + a2 * y / exposure_time - a3 * y)
R = np.repeat(R[:, :, np.newaxis], image.shape[2], axis=2)
image *= R
# Floor any negative radiances to zero (can happend due to noise around blackLevel)
if dark_level is not None:
image[image < 0] = 0
# apply the radiometric calibration - i.e. scale by the gain-exposure product and
# multiply with the radiometric calibration coefficient
if gain is not None and exposure_time is not None:
image /= (gain * exposure_time)
image *= a1
return image
def vignette_map(photo):
x_vc, y_vc = photo.get_vignetting_center()
polynomial = photo.get_vignetting_polynomial()
if x_vc and polynomial:
# append 1., so that we can call with numpy polyval
polynomial.append(1.0)
vignette_poly = np.array(polynomial)
# perform vignette correction
# get coordinate grid across image
x, y = np.meshgrid(np.arange(photo.width), np.arange(photo.height))
# meshgrid returns transposed arrays
# x = x.T
# y = y.T
# compute matrix of distances from image center
r = np.hypot((x - x_vc), (y - y_vc))
# compute the vignette polynomial for each distance - we divide by the polynomial so that the
# corrected image is image_corrected = image_original * vignetteCorrection
vignette = 1.0 / np.polyval(vignette_poly, r)
return vignette, x, y
return None, None, None
def dn_to_reflectance(photo, image, use_sun_sensor=True):
radiance = dn_to_radiance(photo, image)
irradiance = compute_irradiance(photo, use_sun_sensor=use_sun_sensor)
return radiance * math.pi / irradiance
def compute_irradiance(photo, use_sun_sensor=True):
# Thermal?
if photo.band_name == "LWIR":
return 1.0
# Some cameras (Micasense) store the value (nice! just return)
hirradiance = photo.get_horizontal_irradiance()
if hirradiance is not None:
return hirradiance
# TODO: support for calibration panels
if use_sun_sensor and photo.get_sun_sensor():
# Estimate it
dls_orientation_vector = np.array([0,0,-1])
sun_vector_ned, sensor_vector_ned, sun_sensor_angle, \
solar_elevation, solar_azimuth = dls.compute_sun_angle([photo.latitude, photo.longitude],
photo.get_dls_pose(),
photo.get_utc_time(),
dls_orientation_vector)
angular_correction = dls.fresnel(sun_sensor_angle)
# TODO: support for direct and scattered irradiance
direct_to_diffuse_ratio = 6.0 # Assumption, clear skies
spectral_irradiance = photo.get_sun_sensor()
percent_diffuse = 1.0 / direct_to_diffuse_ratio
sensor_irradiance = spectral_irradiance / angular_correction
# Find direct irradiance in the plane normal to the sun
untilted_direct_irr = sensor_irradiance / (percent_diffuse + np.cos(sun_sensor_angle))
direct_irradiance = untilted_direct_irr
scattered_irradiance = untilted_direct_irr * percent_diffuse
# compute irradiance on the ground using the solar altitude angle
horizontal_irradiance = direct_irradiance * np.sin(solar_elevation) + scattered_irradiance
return horizontal_irradiance
elif use_sun_sensor:
log.ODM_WARNING("No sun sensor values found for %s" % photo.filename)
return 1.0