OpenDroneMap-ODM/opendm/remote.py

429 wiersze
17 KiB
Python
Czysty Zwykły widok Historia

import time
import datetime
import os
2019-05-07 20:07:39 +00:00
import sys
import threading
2019-05-07 20:07:39 +00:00
import signal
import zipfile
import glob
from opendm import log
2019-05-09 17:11:02 +00:00
from opendm import system
from pyodm import Node, exceptions
from pyodm.utils import AtomicCounter
from pyodm.types import TaskStatus
2019-05-09 17:11:02 +00:00
from osfm import OSFMContext, get_submodel_args_dict, get_submodel_argv
from pipes import quote
try:
import queue
except ImportError:
import Queue as queue
class LocalRemoteExecutor:
"""
A class for performing OpenSfM reconstructions and full ODM pipeline executions
using a mix of local and remote processing. Tasks are executed locally one at a time
and remotely until a node runs out of available slots for processing. This allows us
to use the processing power of the current machine as well as offloading tasks to a
network node.
"""
def __init__(self, nodeUrl):
self.node = Node.from_url(nodeUrl)
2019-05-08 22:27:17 +00:00
self.params = {
2019-05-09 00:32:02 +00:00
'tasks': [],
'threads': []
2019-05-08 22:27:17 +00:00
}
self.node_online = True
2019-05-07 20:07:39 +00:00
log.ODM_INFO("LRE: Initializing using cluster node %s:%s" % (self.node.host, self.node.port))
try:
odm_version = self.node.info().odm_version
log.ODM_INFO("LRE: Node is online and running ODM version: %s" % odm_version)
except exceptions.NodeConnectionError:
log.ODM_WARNING("LRE: The node seems to be offline! We'll still process the dataset, but it's going to run entirely locally.")
self.node_online = False
except Exception as e:
log.ODM_ERROR("LRE: An unexpected problem happened while opening the node connection: %s" % str(e))
exit(1)
def set_projects(self, paths):
self.project_paths = paths
def run_reconstruction(self):
2019-05-09 17:11:02 +00:00
self.run(ReconstructionTask)
def run_toolchain(self):
self.run(ToolchainTask)
def run(self, taskClass):
if not self.project_paths:
return
# Shared variables across threads
class nonloc:
error = None
local_is_processing = False
semaphore = None
2019-05-09 18:14:31 +00:00
handle_result_mutex = threading.Lock()
unfinished_tasks = AtomicCounter(len(self.project_paths))
node_task_limit = AtomicCounter(0)
# Create queue
q = queue.Queue()
for pp in self.project_paths:
log.ODM_DEBUG("LRE: Adding to queue %s" % pp)
2019-05-09 17:11:02 +00:00
q.put(taskClass(pp, self.node, self.params))
2019-05-10 16:37:35 +00:00
def cleanup_remote_tasks():
2019-05-09 00:32:02 +00:00
if self.params['tasks']:
log.ODM_WARNING("LRE: Attempting to cleanup remote tasks")
else:
log.ODM_WARNING("LRE: No remote tasks to cleanup")
2019-05-08 22:27:17 +00:00
for task in self.params['tasks']:
try:
removed = task.remove()
except exceptions.OdmError:
removed = False
log.ODM_DEBUG("Removing remote task %s... %s" % (task.uuid, 'OK' if removed else 'NO'))
def handle_result(task, local, error = None, partial=False):
2019-05-09 17:11:02 +00:00
try:
2019-05-09 18:14:31 +00:00
handle_result_mutex.acquire()
2019-05-12 14:56:09 +00:00
acquire_semaphore_on_exit = False
2019-05-09 17:11:02 +00:00
if error:
log.ODM_WARNING("LRE: %s failed with: %s" % (task, str(error)))
2019-05-09 17:11:02 +00:00
# Special case in which the error is caused by a SIGTERM signal
# this means a local processing was terminated either by CTRL+C or
# by canceling the task.
if str(error) == "Child was terminated by signal 15":
2019-05-10 16:37:35 +00:00
system.exit_gracefully()
if isinstance(error, NodeTaskLimitReachedException) and not nonloc.semaphore and node_task_limit.value > 0:
2019-05-12 14:56:09 +00:00
sem_value = max(1, node_task_limit.value)
nonloc.semaphore = threading.Semaphore(sem_value)
2019-05-12 14:56:09 +00:00
log.ODM_DEBUG("LRE: Node task limit reached. Setting semaphore to %s" % sem_value)
for i in range(sem_value):
nonloc.semaphore.acquire()
acquire_semaphore_on_exit = True
2019-05-09 18:27:40 +00:00
# Retry, but only if the error is not related to a task failure
if task.retries < task.max_retries and not isinstance(error, exceptions.TaskFailedError):
2019-05-09 17:11:02 +00:00
# Put task back in queue
2019-05-10 13:38:18 +00:00
# Don't increment the retry counter if this task simply reached the task
# limit count.
if not isinstance(error, NodeTaskLimitReachedException):
task.retries += 1
2019-05-09 17:11:02 +00:00
task.wait_until = datetime.datetime.now() + datetime.timedelta(seconds=task.retries * task.retry_timeout)
log.ODM_DEBUG("LRE: Re-queueing %s (retries: %s)" % (task, task.retries))
q.put(task)
else:
nonloc.error = error
2019-05-09 18:27:40 +00:00
unfinished_tasks.increment(-1)
else:
2019-05-09 17:11:02 +00:00
if not local and not partial:
node_task_limit.increment(-1)
2019-05-09 17:11:02 +00:00
if not partial:
log.ODM_INFO("LRE: %s finished successfully" % task)
2019-05-09 18:14:31 +00:00
unfinished_tasks.increment(-1)
2019-05-09 17:11:02 +00:00
if local:
nonloc.local_is_processing = False
if not task.finished:
2019-05-12 14:56:09 +00:00
if not acquire_semaphore_on_exit and nonloc.semaphore: nonloc.semaphore.release()
2019-05-09 17:11:02 +00:00
task.finished = True
2019-05-09 18:14:31 +00:00
q.task_done()
2019-05-09 17:11:02 +00:00
finally:
2019-05-09 18:14:31 +00:00
handle_result_mutex.release()
2019-05-12 14:56:09 +00:00
if acquire_semaphore_on_exit and nonloc.semaphore:
log.ODM_INFO("LRE: Waiting...")
nonloc.semaphore.acquire()
def worker():
while True:
# If we've found a limit on the maximum number of tasks
# a node can process, we block until some tasks have completed
if nonloc.semaphore: nonloc.semaphore.acquire()
2019-05-12 14:56:09 +00:00
# Block until a new queue item is available
task = q.get()
if task is None or nonloc.error is not None:
q.task_done()
if nonloc.semaphore: nonloc.semaphore.release()
break
2019-05-09 13:26:26 +00:00
task.finished = False
if not nonloc.local_is_processing or not self.node_online:
# Process local
try:
nonloc.local_is_processing = True
task.process(True, handle_result)
except Exception as e:
handle_result(task, True, e)
else:
# Process remote
try:
task.process(False, handle_result)
node_task_limit.increment() # Called after upload, but before processing is started
except Exception as e:
handle_result(task, False, e)
2019-05-07 20:07:39 +00:00
2019-05-09 00:32:02 +00:00
# Create queue thread
2019-05-07 20:07:39 +00:00
t = threading.Thread(target=worker)
2019-05-10 16:37:35 +00:00
system.add_cleanup_callback(cleanup_remote_tasks)
2019-05-07 20:07:39 +00:00
# Start worker process
t.start()
2019-05-07 20:07:39 +00:00
# block until all tasks are done (or CTRL+C)
try:
2019-05-09 18:14:31 +00:00
while unfinished_tasks.value > 0:
2019-05-07 20:07:39 +00:00
time.sleep(0.5)
except KeyboardInterrupt:
log.ODM_WARNING("LRE: CTRL+C")
system.exit_gracefully()
2019-05-07 20:07:39 +00:00
# stop workers
2019-05-12 14:56:09 +00:00
if nonloc.semaphore: nonloc.semaphore.release()
q.put(None)
2019-05-09 00:32:02 +00:00
# Wait for queue thread
t.join()
2019-05-09 00:32:02 +00:00
# Wait for all remains threads
for thrds in self.params['threads']:
thrds.join()
2019-05-10 16:37:35 +00:00
system.remove_cleanup_callback(cleanup_remote_tasks)
2019-05-07 20:07:39 +00:00
if nonloc.error is not None:
2019-05-08 22:27:17 +00:00
# Try not to leak access token
if isinstance(nonloc.error, exceptions.NodeConnectionError):
raise exceptions.NodeConnectionError("A connection error happened. Check the connection to the processing node and try again.")
else:
raise nonloc.error
class NodeTaskLimitReachedException(Exception):
pass
class Task:
2019-05-09 17:50:56 +00:00
def __init__(self, project_path, node, params, max_retries=5, retry_timeout=10):
self.project_path = project_path
self.node = node
2019-05-08 22:27:17 +00:00
self.params = params
self.wait_until = datetime.datetime.now() # Don't run this task until a certain time
self.max_retries = max_retries
self.retries = 0
self.retry_timeout = retry_timeout
2019-05-09 00:32:02 +00:00
self.finished = False
def process(self, local, done):
def handle_result(error = None, partial=False):
done(self, local, error, partial)
log.ODM_INFO("LRE: About to process %s %s" % (self, 'locally' if local else 'remotely'))
if local:
t = threading.Thread(target=self._process_local, args=(handle_result, ))
2019-05-09 00:32:02 +00:00
self.params['threads'].append(t)
t.start()
else:
now = datetime.datetime.now()
if self.wait_until > now:
wait_for = (self.wait_until - now).seconds + 1
log.ODM_DEBUG("LRE: Waiting %s seconds before processing %s" % (wait_for, self))
time.sleep(wait_for)
# TODO: we could consider uploading multiple tasks
# in parallel. But since we are using the same node
# perhaps this wouldn't be a big speedup.
self._process_remote(handle_result) # Block until upload is complete
def path(self, *paths):
return os.path.join(self.project_path, *paths)
def create_seed_payload(self, paths, touch_files=[]):
paths = filter(os.path.exists, map(lambda p: self.path(p), paths))
outfile = self.path("seed.zip")
with zipfile.ZipFile(outfile, "w", compression=zipfile.ZIP_DEFLATED) as zf:
for p in paths:
if os.path.isdir(p):
for root, _, filenames in os.walk(p):
for filename in filenames:
filename = os.path.join(root, filename)
filename = os.path.normpath(filename)
zf.write(filename, os.path.relpath(filename, self.project_path))
else:
zf.write(p, os.path.relpath(p, self.project_path))
for tf in touch_files:
zf.writestr(tf, "")
return outfile
def _process_local(self, done):
try:
self.process_local()
done()
except Exception as e:
done(e)
def _process_remote(self, done):
try:
self.process_remote(done)
done(error=None, partial=True) # Upload is completed, but processing is not (partial)
except Exception as e:
done(e)
2019-05-09 17:37:58 +00:00
def execute_remote_task(self, done, seed_files = [], seed_touch_files = [], outputs = []):
2019-05-09 17:11:02 +00:00
"""
Run a task by creating a seed file with all files in seed_files, optionally
creating empty files (for flag checks) specified in seed_touch_files
and returning the results specified in outputs. Yeah it's pretty cool!
"""
seed_file = self.create_seed_payload(seed_files, touch_files=seed_touch_files)
# Find all images
images = glob.glob(self.path("images/**"))
# Add GCP (optional)
if os.path.exists(self.path("gcp_list.txt")):
images.append(self.path("gcp_list.txt"))
# Add seed file
images.append(seed_file)
def print_progress(percentage):
2019-05-08 22:27:17 +00:00
if percentage % 10 == 0:
log.ODM_DEBUG("LRE: Upload of %s at [%s%%]" % (self, int(percentage)))
# Upload task
task = self.node.create_task(images,
2019-05-08 22:27:17 +00:00
get_submodel_args_dict(),
progress_callback=print_progress,
skip_post_processing=True,
2019-05-09 17:11:02 +00:00
outputs=outputs)
# Cleanup seed file
os.remove(seed_file)
# Keep track of tasks for cleanup
2019-05-08 22:27:17 +00:00
self.params['tasks'].append(task)
# Check status
info = task.info()
2019-05-08 22:27:17 +00:00
if info.status in [TaskStatus.RUNNING, TaskStatus.COMPLETED]:
def monitor():
2019-05-09 17:37:58 +00:00
class nonloc:
status_callback_calls = 0
def status_callback(info):
2019-05-09 17:37:58 +00:00
# If a task switches from RUNNING to QUEUED, then we need to
# stop the process and re-add the task to the queue.
if info.status == TaskStatus.QUEUED:
2019-05-09 17:11:02 +00:00
log.ODM_WARNING("LRE: %s (%s) turned from RUNNING to QUEUED. Re-adding to back of the queue." % (self, task.uuid))
task.remove()
2019-05-10 12:03:21 +00:00
raise NodeTaskLimitReachedException("Delayed task limit reached")
2019-05-09 17:37:58 +00:00
elif info.status == TaskStatus.RUNNING:
# Print a status message once in a while
nonloc.status_callback_calls += 1
if nonloc.status_callback_calls > 30:
log.ODM_DEBUG("LRE: %s (%s) is still running" % (self, task.uuid))
nonloc.status_callback_calls = 0
try:
2019-05-08 22:27:17 +00:00
def print_progress(percentage):
if percentage % 10 == 0:
log.ODM_DEBUG("LRE: Download of %s at [%s%%]" % (self, int(percentage)))
task.wait_for_completion(status_callback=status_callback)
2019-05-08 22:27:17 +00:00
log.ODM_DEBUG("LRE: Downloading assets for %s" % self)
task.download_assets(self.project_path, progress_callback=print_progress)
2019-05-09 00:32:02 +00:00
log.ODM_DEBUG("LRE: Downloaded and extracted assets for %s" % self)
done()
2019-05-09 00:32:02 +00:00
except exceptions.TaskFailedError as e:
# Try to get output
try:
2019-05-10 14:05:44 +00:00
msg = "(%s) failed with task output: %s" % (task.uuid, "\n".join(task.output()[-10:]))
2019-05-10 13:38:18 +00:00
done(exceptions.TaskFailedError(msg))
2019-05-09 00:32:02 +00:00
except:
2019-05-10 14:05:44 +00:00
log.ODM_WARNING("LRE: Could not retrieve task output for %s (%s)" % (self, task.uuid))
2019-05-10 13:38:18 +00:00
done(e)
except Exception as e:
done(e)
# Launch monitor thread and return
2019-05-09 00:32:02 +00:00
t = threading.Thread(target=monitor)
self.params['threads'].append(t)
t.start()
elif info.status == TaskStatus.QUEUED:
raise NodeTaskLimitReachedException("Task limit reached")
else:
2019-05-08 22:27:17 +00:00
raise Exception("Could not send task to node, task status is %s" % str(info.status))
2019-05-09 17:11:02 +00:00
def process_local(self):
raise NotImplementedError()
def process_remote(self, done):
raise NotImplementedError()
def __str__(self):
return os.path.basename(self.project_path)
class ReconstructionTask(Task):
def process_local(self):
octx = OSFMContext(self.path("opensfm"))
log.ODM_INFO("==================================")
log.ODM_INFO("Local Reconstruction %s" % octx.name())
log.ODM_INFO("==================================")
octx.feature_matching()
octx.reconstruct()
def process_remote(self, done):
2019-05-09 17:37:58 +00:00
self.execute_remote_task(done, seed_files=["opensfm/exif",
2019-05-09 17:11:02 +00:00
"opensfm/camera_models.json",
"opensfm/reference_lla.json"],
seed_touch_files=["opensfm/split_merge_stop_at_reconstruction.txt"],
outputs=["opensfm/matches", "opensfm/features",
"opensfm/reconstruction.json",
"opensfm/tracks.csv"])
class ToolchainTask(Task):
def process_local(self):
log.ODM_INFO("=============================")
log.ODM_INFO("Local Toolchain %s" % self)
log.ODM_INFO("=============================")
submodel_name = os.path.basename(self.project_path)
submodels_path = os.path.abspath(self.path(".."))
project_name = os.path.basename(os.path.abspath(os.path.join(submodels_path, "..")))
2019-05-09 17:37:58 +00:00
argv = get_submodel_argv(project_name, submodels_path, submodel_name)
2019-05-09 17:11:02 +00:00
# Re-run the ODM toolchain on the submodel
system.run(" ".join(map(quote, argv)), env_vars=os.environ.copy())
2019-05-07 20:07:39 +00:00
2019-05-09 17:11:02 +00:00
def process_remote(self, done):
2019-05-09 17:37:58 +00:00
self.execute_remote_task(done, seed_files=["opensfm/exif",
2019-05-09 17:11:02 +00:00
"opensfm/camera_models.json",
"opensfm/reference_lla.json",
"opensfm/features",
"opensfm/matches",
"opensfm/reconstruction.json",
"opensfm/tracks.csv"],
seed_touch_files=[],
outputs=["odm_orthophoto/odm_orthophoto.tif",
"odm_orthophoto/cutline.gpkg",
"odm_dem",
"odm_georeferencing"])