/** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * This notice applies to any and all portions of this file * that are not between comment pairs USER CODE BEGIN and * USER CODE END. Other portions of this file, whether * inserted by the user or by software development tools * are owned by their respective copyright owners. * * Copyright (c) 2021 STMicroelectronics International N.V. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted, provided that the following conditions are met: * * 1. Redistribution of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of other * contributors to this software may be used to endorse or promote products * derived from this software without specific written permission. * 4. This software, including modifications and/or derivative works of this * software, must execute solely and exclusively on microcontroller or * microprocessor devices manufactured by or for STMicroelectronics. * 5. Redistribution and use of this software other than as permitted under * this license is void and will automatically terminate your rights under * this license. * * THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY * RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT * SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32l4xx_hal.h" #include "cmsis_os.h" /* USER CODE BEGIN Includes */ #include "LEDIndicator.h" #include "Log.h" #include /* USER CODE END Includes */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; DMA_HandleTypeDef hdma_adc1; CRC_HandleTypeDef hcrc; DAC_HandleTypeDef hdac1; DMA_HandleTypeDef hdma_dac_ch1; I2C_HandleTypeDef hi2c3; DMA_HandleTypeDef hdma_i2c3_rx; DMA_HandleTypeDef hdma_i2c3_tx; OPAMP_HandleTypeDef hopamp1; IWDG_HandleTypeDef hiwdg; RNG_HandleTypeDef hrng; RTC_HandleTypeDef hrtc; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim6; TIM_HandleTypeDef htim7; UART_HandleTypeDef huart2; DMA_HandleTypeDef hdma_usart2_rx; DMA_HandleTypeDef hdma_usart2_tx; osThreadId defaultTaskHandle; uint32_t defaultTaskBuffer[ 256 ]; osStaticThreadDef_t defaultTaskControlBlock; osThreadId ioEventTaskHandle; uint32_t ioEventTaskBuffer[ 384 ]; osStaticThreadDef_t ioEventTaskControlBlock; osThreadId audioInputTaskHandle; uint32_t audioInputTaskBuffer[ 512 ]; osStaticThreadDef_t audioInputTaskControlBlock; osThreadId modulatorTaskHandle; uint32_t modulatorTaskBuffer[ 384 ]; osStaticThreadDef_t modulatorTaskControlBlock; osMessageQId ioEventQueueHandle; uint8_t ioEventQueueBuffer[ 16 * sizeof( uint32_t ) ]; osStaticMessageQDef_t ioEventQueueControlBlock; osMessageQId serialInputQueueHandle; uint8_t serialInputQueueBuffer[ 16 * sizeof( uint32_t ) ]; osStaticMessageQDef_t serialInputQueueControlBlock; osMessageQId serialOutputQueueHandle; uint8_t serialOutputQueueBuffer[ 16 * sizeof( uint32_t ) ]; osStaticMessageQDef_t serialOutputQueueControlBlock; osMessageQId audioInputQueueHandle; uint8_t audioInputQueueBuffer[ 8 * sizeof( uint32_t ) ]; osStaticMessageQDef_t audioInputQueueControlBlock; osMessageQId hdlcInputQueueHandle; uint8_t hdlcInputQueueBuffer[ 3 * sizeof( uint32_t ) ]; osStaticMessageQDef_t hdlcInputQueueControlBlock; osMessageQId hdlcOutputQueueHandle; uint8_t hdlcOutputQueueBuffer[ 3 * sizeof( uint32_t ) ]; osStaticMessageQDef_t hdlcOutputQueueControlBlock; osMessageQId dacOutputQueueHandle; uint8_t dacOutputQueueBuffer[ 128 * sizeof( uint8_t ) ]; osStaticMessageQDef_t dacOutputQueueControlBlock; osMessageQId adcInputQueueHandle; uint8_t adcInputQueueBuffer[ 3 * sizeof( uint32_t ) ]; osStaticMessageQDef_t adcInputQueueControlBlock; /* USER CODE BEGIN PV */ /* Private variables ---------------------------------------------------------*/ osMutexId hardwareInitMutexHandle; char serial_number_64[13] = {0}; char error_message[80] __attribute__((section(".bss3"))) = {0}; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); static void MX_CRC_Init(void); static void MX_DAC1_Init(void); static void MX_OPAMP1_Init(void); static void MX_RTC_Init(void); static void MX_TIM6_Init(void); static void MX_TIM7_Init(void); static void MX_USART2_UART_Init(void); static void MX_I2C3_Init(void); static void MX_TIM1_Init(void); static void MX_RNG_Init(void); static void MX_IWDG_Init(void); void startDefaultTask(void const * argument); extern void startIOEventTask(void const * argument); extern void startAudioInputTask(void const * argument); extern void startModulatorTask(void const * argument); void encode_serial_number(void); void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); /* USER CODE BEGIN PFP */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE END PFP */ /* USER CODE BEGIN 0 */ /* * Same algorithm as here: https://github.com/libopencm3/libopencm3/blob/master/lib/stm32/desig.c */ void encode_serial_number() { uint8_t *uid = (uint8_t *)UID_BASE; uint8_t serial[6]; serial[0] = uid[11]; serial[1] = uid[10] + uid[2]; serial[2] = uid[9]; serial[3] = uid[8] + uid[0]; serial[4] = uid[7]; serial[5] = uid[6]; snprintf( serial_number_64, sizeof(serial_number_64), "%02X%02X%02X%02X%02X%02X", serial[0], serial[1], serial[2], serial[3], serial[4], serial[5] ); } /* USER CODE END 0 */ /** * @brief The application entry point. * * @retval None */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration----------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_CRC_Init(); MX_DAC1_Init(); MX_OPAMP1_Init(); MX_RTC_Init(); MX_TIM6_Init(); MX_TIM7_Init(); MX_USART2_UART_Init(); MX_I2C3_Init(); MX_TIM1_Init(); MX_RNG_Init(); /* USER CODE BEGIN 2 */ #ifdef KISS_LOGGING printf("start\r\n"); if (error_message[0] != 0) { printf(error_message); error_message[0] = 0; } #endif indicate_turning_on(); encode_serial_number(); /* USER CODE END 2 */ /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ osMutexDef(hardwareInitMutex); hardwareInitMutexHandle = osMutexCreate(osMutex(hardwareInitMutex)); osMutexWait(hardwareInitMutexHandle, osWaitForever); /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wwrite-strings" // cmsis-os is not const-correct. /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the thread(s) */ /* definition and creation of defaultTask */ osThreadStaticDef(defaultTask, startDefaultTask, osPriorityIdle, 0, 256, defaultTaskBuffer, &defaultTaskControlBlock); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); /* definition and creation of ioEventTask */ osThreadStaticDef(ioEventTask, startIOEventTask, osPriorityLow, 0, 384, ioEventTaskBuffer, &ioEventTaskControlBlock); ioEventTaskHandle = osThreadCreate(osThread(ioEventTask), NULL); /* definition and creation of audioInputTask */ osThreadStaticDef(audioInputTask, startAudioInputTask, osPriorityAboveNormal, 0, 512, audioInputTaskBuffer, &audioInputTaskControlBlock); audioInputTaskHandle = osThreadCreate(osThread(audioInputTask), NULL); /* definition and creation of modulatorTask */ osThreadStaticDef(modulatorTask, startModulatorTask, osPriorityAboveNormal, 0, 384, modulatorTaskBuffer, &modulatorTaskControlBlock); modulatorTaskHandle = osThreadCreate(osThread(modulatorTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* Create the queue(s) */ /* definition and creation of ioEventQueue */ osMessageQStaticDef(ioEventQueue, 16, uint32_t, ioEventQueueBuffer, &ioEventQueueControlBlock); ioEventQueueHandle = osMessageCreate(osMessageQ(ioEventQueue), NULL); /* definition and creation of serialInputQueue */ osMessageQStaticDef(serialInputQueue, 16, uint32_t, serialInputQueueBuffer, &serialInputQueueControlBlock); serialInputQueueHandle = osMessageCreate(osMessageQ(serialInputQueue), NULL); /* definition and creation of serialOutputQueue */ osMessageQStaticDef(serialOutputQueue, 16, uint32_t, serialOutputQueueBuffer, &serialOutputQueueControlBlock); serialOutputQueueHandle = osMessageCreate(osMessageQ(serialOutputQueue), NULL); /* definition and creation of audioInputQueue */ osMessageQStaticDef(audioInputQueue, 8, uint32_t, audioInputQueueBuffer, &audioInputQueueControlBlock); audioInputQueueHandle = osMessageCreate(osMessageQ(audioInputQueue), NULL); /* definition and creation of hdlcInputQueue */ osMessageQStaticDef(hdlcInputQueue, 3, uint32_t, hdlcInputQueueBuffer, &hdlcInputQueueControlBlock); hdlcInputQueueHandle = osMessageCreate(osMessageQ(hdlcInputQueue), NULL); /* definition and creation of hdlcOutputQueue */ osMessageQStaticDef(hdlcOutputQueue, 3, uint32_t, hdlcOutputQueueBuffer, &hdlcOutputQueueControlBlock); hdlcOutputQueueHandle = osMessageCreate(osMessageQ(hdlcOutputQueue), NULL); /* definition and creation of dacOutputQueue */ osMessageQStaticDef(dacOutputQueue, 128, uint8_t, dacOutputQueueBuffer, &dacOutputQueueControlBlock); dacOutputQueueHandle = osMessageCreate(osMessageQ(dacOutputQueue), NULL); /* definition and creation of adcInputQueue */ osMessageQStaticDef(adcInputQueue, 3, uint32_t, adcInputQueueBuffer, &adcInputQueueControlBlock); adcInputQueueHandle = osMessageCreate(osMessageQ(adcInputQueue), NULL); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ #pragma GCC diagnostic pop if (HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_2, DAC_ALIGN_12B_R, 1024) != HAL_OK) Error_Handler(); if (HAL_DAC_Start(&hdac1, DAC_CHANNEL_2) != HAL_OK) Error_Handler(); if (HAL_OPAMP_SelfCalibrate(&hopamp1) != HAL_OK) Error_Handler(); if (HAL_OPAMP_Start(&hopamp1) != HAL_OK) Error_Handler(); if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) Error_Handler(); FLASH_OBProgramInitTypeDef obInit = {0}; HAL_FLASHEx_OBGetConfig(&obInit); if ((obInit.OptionType & OPTIONBYTE_USER) == RESET) { printf("FAIL: option byte init\r\n"); Error_Handler(); } #if 1 // Do not erase SRAM2 during reset. if ((obInit.USERConfig & FLASH_OPTR_SRAM2_RST) == RESET) { obInit.OptionType = OPTIONBYTE_USER; obInit.USERType = OB_USER_SRAM2_RST; obInit.USERConfig = FLASH_OPTR_SRAM2_RST; HAL_FLASH_OB_Unlock(); HAL_FLASHEx_OBProgram(&obInit); HAL_FLASH_OB_Lock(); HAL_FLASH_OB_Launch(); } #endif #if 1 // Enable hardware parity check on SRAM2 if ((obInit.USERConfig & FLASH_OPTR_SRAM2_PE) == RESET) { obInit.OptionType = OPTIONBYTE_USER; obInit.USERType = OB_USER_SRAM2_PE; obInit.USERConfig = FLASH_OPTR_SRAM2_PE; HAL_FLASH_OB_Unlock(); HAL_FLASHEx_OBProgram(&obInit); HAL_FLASH_OB_Lock(); HAL_FLASH_OB_Launch(); } #endif /* USER CODE END RTOS_QUEUES */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; RCC_CRSInitTypeDef RCC_CRSInitStruct; /**Configure LSE Drive Capability */ HAL_PWR_EnableBkUpAccess(); __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW); /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_LSE |RCC_OSCILLATORTYPE_MSI|RCC_OSCILLATORTYPE_HSI |RCC_OSCILLATORTYPE_HSI48; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSI48State = RCC_HSI48_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 8; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_USART2 |RCC_PERIPHCLK_I2C3|RCC_PERIPHCLK_RNG |RCC_PERIPHCLK_ADC; PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_HSI; PeriphClkInit.I2c3ClockSelection = RCC_I2C3CLKSOURCE_HSI; PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1; PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; PeriphClkInit.RngClockSelection = RCC_RNGCLKSOURCE_HSI48; PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_MSI; PeriphClkInit.PLLSAI1.PLLSAI1M = 4; PeriphClkInit.PLLSAI1.PLLSAI1N = 24; PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7; PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV6; PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV4; PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /**Enable MSI Auto calibration */ HAL_RCCEx_EnableMSIPLLMode(); /**Enable the SYSCFG APB clock */ __HAL_RCC_CRS_CLK_ENABLE(); /**Configures CRS */ RCC_CRSInitStruct.Prescaler = RCC_CRS_SYNC_DIV1; RCC_CRSInitStruct.Source = RCC_CRS_SYNC_SOURCE_LSE; RCC_CRSInitStruct.Polarity = RCC_CRS_SYNC_POLARITY_RISING; RCC_CRSInitStruct.ReloadValue = __HAL_RCC_CRS_RELOADVALUE_CALCULATE(48000000,32768); RCC_CRSInitStruct.ErrorLimitValue = 34; RCC_CRSInitStruct.HSI48CalibrationValue = 32; HAL_RCCEx_CRSConfig(&RCC_CRSInitStruct); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0); } /* ADC1 init function */ static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig; /**Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T6_TRGO; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.OversamplingMode = ENABLE; hadc1.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_16; hadc1.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_2; hadc1.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER; hadc1.Init.Oversampling.OversamplingStopReset = ADC_REGOVERSAMPLING_CONTINUED_MODE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_8; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_24CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* CRC init function */ static void MX_CRC_Init(void) { hcrc.Instance = CRC; hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE; hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE; hcrc.Init.GeneratingPolynomial = 4129; hcrc.Init.CRCLength = CRC_POLYLENGTH_16B; hcrc.Init.InitValue = 0xFFFF; hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE; hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE; hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES; if (HAL_CRC_Init(&hcrc) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* DAC1 init function */ static void MX_DAC1_Init(void) { DAC_ChannelConfTypeDef sConfig; /**DAC Initialization */ hdac1.Instance = DAC1; if (HAL_DAC_Init(&hdac1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**DAC channel OUT1 config */ sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_T7_TRGO; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**DAC channel OUT2 config */ sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* I2C3 init function */ static void MX_I2C3_Init(void) { hi2c3.Instance = I2C3; hi2c3.Init.Timing = 0x0010061A; hi2c3.Init.OwnAddress1 = 0; hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c3.Init.OwnAddress2 = 0; hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c3) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**I2C Fast mode Plus enable */ HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C3); } /* IWDG init function */ static void MX_IWDG_Init(void) { hiwdg.Instance = IWDG; hiwdg.Init.Prescaler = IWDG_PRESCALER_16; hiwdg.Init.Window = 4095; hiwdg.Init.Reload = 4095; if (HAL_IWDG_Init(&hiwdg) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* OPAMP1 init function */ static void MX_OPAMP1_Init(void) { hopamp1.Instance = OPAMP1; hopamp1.Init.PowerSupplyRange = OPAMP_POWERSUPPLY_HIGH; hopamp1.Init.Mode = OPAMP_PGA_MODE; hopamp1.Init.NonInvertingInput = OPAMP_NONINVERTINGINPUT_IO0; hopamp1.Init.InvertingInput = OPAMP_INVERTINGINPUT_CONNECT_NO; // Manually changed. hopamp1.Init.PgaGain = OPAMP_PGA_GAIN_2; hopamp1.Init.PowerMode = OPAMP_POWERMODE_NORMAL; hopamp1.Init.UserTrimming = OPAMP_TRIMMING_FACTORY; if (HAL_OPAMP_Init(&hopamp1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* RNG init function */ static void MX_RNG_Init(void) { hrng.Instance = RNG; if (HAL_RNG_Init(&hrng) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* RTC init function */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ RTC_TimeTypeDef sTime; RTC_DateTypeDef sDate; /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /**Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if (HAL_RTC_Init(&hrtc) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Initialize RTC and set the Time and Date */ sTime.Hours = 0x0; sTime.Minutes = 0x0; sTime.Seconds = 0x0; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_JANUARY; sDate.Date = 0x1; sDate.Year = 0x0; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* TIM1 init function */ static void MX_TIM1_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig; TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig; htim1.Instance = TIM1; htim1.Init.Prescaler = 48; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 9999; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_SET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.BreakFilter = 0; sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE; sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH; sBreakDeadTimeConfig.Break2Filter = 0; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } HAL_TIM_MspPostInit(&htim1); } /* TIM6 init function */ static void MX_TIM6_Init(void) { TIM_MasterConfigTypeDef sMasterConfig; htim6.Instance = TIM6; htim6.Init.Prescaler = 0; htim6.Init.CounterMode = TIM_COUNTERMODE_UP; htim6.Init.Period = 1817; htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim6) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* TIM7 init function */ static void MX_TIM7_Init(void) { TIM_MasterConfigTypeDef sMasterConfig; htim7.Instance = TIM7; htim7.Init.Prescaler = 0; htim7.Init.CounterMode = TIM_COUNTERMODE_UP; htim7.Init.Period = 1817; htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim7) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* USART2 init function */ static void MX_USART2_UART_Init(void) { huart2.Instance = USART2; huart2.Init.BaudRate = 38400; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 1); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* DMA1_Channel2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 7, 1); HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 6, 1); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); /* DMA1_Channel6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 7, 0); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); /* DMA1_Channel7_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 6, 0); HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); /* DMA2_Channel4_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Channel4_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA2_Channel4_IRQn); } /** Configure pins as * Analog * Input * Output * EVENT_OUT * EXTI * Free pins are configured automatically as Analog (this feature is enabled through * the Code Generation settings) */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, PTT_M_Pin|PTT_S_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD3_GPIO_Port, LD3_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(AUDIO_OUT_ATTEN_GPIO_Port, AUDIO_OUT_ATTEN_Pin, GPIO_PIN_SET); /*Configure GPIO pin : PA6 */ GPIO_InitStruct.Pin = GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : PB0 PB6 PB7 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_6|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : BUTTON_AUDIO_IN_ADJUST_Pin */ GPIO_InitStruct.Pin = BUTTON_AUDIO_IN_ADJUST_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(BUTTON_AUDIO_IN_ADJUST_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : PTT_M_Pin PTT_S_Pin */ GPIO_InitStruct.Pin = PTT_M_Pin|PTT_S_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : LD3_Pin */ GPIO_InitStruct.Pin = LD3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD3_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : AUDIO_OUT_ATTEN_Pin */ GPIO_InitStruct.Pin = AUDIO_OUT_ATTEN_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(AUDIO_OUT_ATTEN_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : PH3 */ GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOH, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI1_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI1_IRQn); } /* USER CODE BEGIN 4 */ void SysClock48() { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; if (HAL_RCC_GetHCLKFreq() == 48000000) return; INFO("Setting 48MHz SysClock."); taskENTER_CRITICAL(); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 8; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI; PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1; PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_MSI; PeriphClkInit.PLLSAI1.PLLSAI1M = 4; PeriphClkInit.PLLSAI1.PLLSAI1N = 24; PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7; PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV6; PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV4; PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); taskEXIT_CRITICAL(); } void SysClock72() { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; if (HAL_RCC_GetHCLKFreq() == 72000000) return; INFO("Setting 72MHz SysClock."); taskENTER_CRITICAL(); HAL_RCCEx_DisableMSIPLLMode(); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 12; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1; PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_MSI; PeriphClkInit.PLLSAI1.PLLSAI1M = 4; PeriphClkInit.PLLSAI1.PLLSAI1N = 24; PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7; PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV6; PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV4; PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } HAL_RCCEx_EnableMSIPLLMode(); /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); taskEXIT_CRITICAL(); } void SysClock80() { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; if (HAL_RCC_GetHCLKFreq() == 80000000) return; INFO("Setting 80MHz SysClock."); taskENTER_CRITICAL(); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } RCC_OscInitStruct.OscillatorType = 0; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI; RCC_OscInitStruct.PLL.PLLM = 3; RCC_OscInitStruct.PLL.PLLN = 20; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV4; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); taskEXIT_CRITICAL(); } void SysClock4() { RCC_ClkInitTypeDef RCC_ClkInitStruct; taskENTER_CRITICAL(); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); taskEXIT_CRITICAL(); } /* USER CODE END 4 */ /* USER CODE BEGIN Header_startDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_startDefaultTask */ void startDefaultTask(void const * argument) { /* USER CODE BEGIN 5 */ /* Infinite loop */ for(;;) { osDelay(osWaitForever); } /* USER CODE END 5 */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM2 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM2) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ if (htim->Instance == TIM1) { LED_TIMER_PeriodElapsedCallback(); } /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @param file: The file name as string. * @param line: The line in file as a number. * @retval None */ void _Error_Handler(char *file, int line) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ snprintf(error_message, sizeof(error_message), "Error: %s:%d\r\n", file, line); error_message[sizeof(error_message) - 1] = 0; NVIC_SystemReset(); /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* USER CODE BEGIN 6 */ _Error_Handler(file, line); /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ void vApplicationStackOverflowHook(TaskHandle_t xTask, signed char *pcTaskName) { snprintf(error_message, sizeof(error_message), "stack overflow %s", pcTaskName); while (1); } /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/