MeshDiffusion/lib/diffusion/models/layers.py

771 wiersze
27 KiB
Python

# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
"""Common layers for defining score networks.
"""
import math
import string
from functools import partial
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
from .normalization import ConditionalInstanceNorm3dPlus
def get_act(config):
"""Get activation functions from the config file."""
if config.model.nonlinearity.lower() == 'elu':
return nn.ELU()
elif config.model.nonlinearity.lower() == 'relu':
return nn.ReLU()
elif config.model.nonlinearity.lower() == 'lrelu':
return nn.LeakyReLU(negative_slope=0.2)
elif config.model.nonlinearity.lower() == 'swish':
return nn.SiLU()
else:
raise NotImplementedError('activation function does not exist!')
def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=0):
"""1x1 convolution. Same as NCSNv1/v2."""
conv = nn.Conv3d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias, dilation=dilation,
padding=padding)
init_scale = 1e-10 if init_scale == 0 else init_scale
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
def variance_scaling(scale, mode, distribution,
in_axis=1, out_axis=0,
dtype=torch.float32,
device='cpu'):
"""Ported from JAX. """
def _compute_fans(shape, in_axis=1, out_axis=0):
receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
fan_in = shape[in_axis] * receptive_field_size
fan_out = shape[out_axis] * receptive_field_size
return fan_in, fan_out
def init(shape, dtype=dtype, device=device):
fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
if mode == "fan_in":
denominator = fan_in
elif mode == "fan_out":
denominator = fan_out
elif mode == "fan_avg":
denominator = (fan_in + fan_out) / 2
else:
raise ValueError(
"invalid mode for variance scaling initializer: {}".format(mode))
variance = scale / denominator
if distribution == "normal":
return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance)
elif distribution == "uniform":
return (torch.rand(*shape, dtype=dtype, device=device) * 2. - 1.) * np.sqrt(3 * variance)
else:
raise ValueError("invalid distribution for variance scaling initializer")
return init
def default_init(scale=1.):
"""The same initialization used in DDPM."""
scale = 1e-10 if scale == 0 else scale
return variance_scaling(scale, 'fan_avg', 'uniform')
class Dense(nn.Module):
"""Linear layer with `default_init`."""
def __init__(self):
super().__init__()
def ddpm_conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1., padding=0):
"""1x1 convolution with DDPM initialization."""
conv = nn.Conv3d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias)
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
nn.init.zeros_(conv.bias)
return conv
def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1):
"""3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
init_scale = 1e-10 if init_scale == 0 else init_scale
conv = nn.Conv3d(in_planes, out_planes, stride=stride, bias=bias,
dilation=dilation, padding=padding, kernel_size=3)
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
def ddpm_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1):
"""3x3 convolution with DDPM initialization."""
conv = nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding,
dilation=dilation, bias=bias)
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
nn.init.zeros_(conv.bias)
return conv
def ddpm_conv5x5(in_planes, out_planes, stride=2, bias=True, dilation=1, init_scale=1., padding=2):
"""3x3 convolution with DDPM initialization."""
conv = nn.Conv3d(in_planes, out_planes, kernel_size=5, stride=stride, padding=padding,
dilation=dilation, bias=bias)
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
nn.init.zeros_(conv.bias)
return conv
def ddpm_conv5x5_transposed(in_planes, out_planes, stride=2, bias=True, dilation=1, init_scale=1., padding=2):
"""3x3 convolution with DDPM initialization."""
conv = nn.ConvTranspose3d(in_planes, out_planes, kernel_size=5, stride=stride, padding=padding,
dilation=dilation, bias=bias, output_padding=(0, 1))
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
nn.init.zeros_(conv.bias)
return conv
def ddpm_conv6x6_transposed(in_planes, out_planes, stride=2, bias=True, dilation=1, init_scale=1., padding=2):
"""3x3 convolution with DDPM initialization."""
conv = nn.ConvTranspose3d(in_planes, out_planes, kernel_size=6, stride=stride, padding=padding,
dilation=dilation, bias=bias)
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
nn.init.zeros_(conv.bias)
return conv
###########################################################################
# Functions below are ported over from the NCSNv1/NCSNv2 codebase:
# https://github.com/ermongroup/ncsn
# https://github.com/ermongroup/ncsnv2
###########################################################################
class CRPBlock(nn.Module):
def __init__(self, features, n_stages, act=nn.ReLU(), maxpool=True):
super().__init__()
self.convs = nn.ModuleList()
for i in range(n_stages):
self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False))
self.n_stages = n_stages
if maxpool:
self.pool = nn.MaxPool3d(kernel_size=5, stride=1, padding=2)
else:
self.pool = nn.AvgPool3d(kernel_size=5, stride=1, padding=2)
self.act = act
def forward(self, x):
x = self.act(x)
path = x
for i in range(self.n_stages):
path = self.pool(path)
path = self.convs[i](path)
x = path + x
return x
class CondCRPBlock(nn.Module):
def __init__(self, features, n_stages, num_classes, normalizer, act=nn.ReLU()):
super().__init__()
self.convs = nn.ModuleList()
self.norms = nn.ModuleList()
self.normalizer = normalizer
for i in range(n_stages):
self.norms.append(normalizer(features, num_classes, bias=True))
self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False))
self.n_stages = n_stages
self.pool = nn.AvgPool3d(kernel_size=5, stride=1, padding=2)
self.act = act
def forward(self, x, y):
x = self.act(x)
path = x
for i in range(self.n_stages):
path = self.norms[i](path, y)
path = self.pool(path)
path = self.convs[i](path)
x = path + x
return x
class RCUBlock(nn.Module):
def __init__(self, features, n_blocks, n_stages, act=nn.ReLU()):
super().__init__()
for i in range(n_blocks):
for j in range(n_stages):
setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False))
self.stride = 1
self.n_blocks = n_blocks
self.n_stages = n_stages
self.act = act
def forward(self, x):
for i in range(self.n_blocks):
residual = x
for j in range(self.n_stages):
x = self.act(x)
x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)
x += residual
return x
class CondRCUBlock(nn.Module):
def __init__(self, features, n_blocks, n_stages, num_classes, normalizer, act=nn.ReLU()):
super().__init__()
for i in range(n_blocks):
for j in range(n_stages):
setattr(self, '{}_{}_norm'.format(i + 1, j + 1), normalizer(features, num_classes, bias=True))
setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False))
self.stride = 1
self.n_blocks = n_blocks
self.n_stages = n_stages
self.act = act
self.normalizer = normalizer
def forward(self, x, y):
for i in range(self.n_blocks):
residual = x
for j in range(self.n_stages):
x = getattr(self, '{}_{}_norm'.format(i + 1, j + 1))(x, y)
x = self.act(x)
x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)
x += residual
return x
class MSFBlock(nn.Module):
def __init__(self, in_planes, features):
super().__init__()
assert isinstance(in_planes, list) or isinstance(in_planes, tuple)
self.convs = nn.ModuleList()
self.features = features
for i in range(len(in_planes)):
self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True))
def forward(self, xs, shape):
sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
for i in range(len(self.convs)):
h = self.convs[i](xs[i])
h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
sums += h
return sums
class CondMSFBlock(nn.Module):
def __init__(self, in_planes, features, num_classes, normalizer):
super().__init__()
assert isinstance(in_planes, list) or isinstance(in_planes, tuple)
self.convs = nn.ModuleList()
self.norms = nn.ModuleList()
self.features = features
self.normalizer = normalizer
for i in range(len(in_planes)):
self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True))
self.norms.append(normalizer(in_planes[i], num_classes, bias=True))
def forward(self, xs, y, shape):
sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
for i in range(len(self.convs)):
h = self.norms[i](xs[i], y)
h = self.convs[i](h)
h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
sums += h
return sums
class RefineBlock(nn.Module):
def __init__(self, in_planes, features, act=nn.ReLU(), start=False, end=False, maxpool=True):
super().__init__()
assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
self.n_blocks = n_blocks = len(in_planes)
self.adapt_convs = nn.ModuleList()
for i in range(n_blocks):
self.adapt_convs.append(RCUBlock(in_planes[i], 2, 2, act))
self.output_convs = RCUBlock(features, 3 if end else 1, 2, act)
if not start:
self.msf = MSFBlock(in_planes, features)
self.crp = CRPBlock(features, 2, act, maxpool=maxpool)
def forward(self, xs, output_shape):
assert isinstance(xs, tuple) or isinstance(xs, list)
hs = []
for i in range(len(xs)):
h = self.adapt_convs[i](xs[i])
hs.append(h)
if self.n_blocks > 1:
h = self.msf(hs, output_shape)
else:
h = hs[0]
h = self.crp(h)
h = self.output_convs(h)
return h
class CondRefineBlock(nn.Module):
def __init__(self, in_planes, features, num_classes, normalizer, act=nn.ReLU(), start=False, end=False):
super().__init__()
assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
self.n_blocks = n_blocks = len(in_planes)
self.adapt_convs = nn.ModuleList()
for i in range(n_blocks):
self.adapt_convs.append(
CondRCUBlock(in_planes[i], 2, 2, num_classes, normalizer, act)
)
self.output_convs = CondRCUBlock(features, 3 if end else 1, 2, num_classes, normalizer, act)
if not start:
self.msf = CondMSFBlock(in_planes, features, num_classes, normalizer)
self.crp = CondCRPBlock(features, 2, num_classes, normalizer, act)
def forward(self, xs, y, output_shape):
assert isinstance(xs, tuple) or isinstance(xs, list)
hs = []
for i in range(len(xs)):
h = self.adapt_convs[i](xs[i], y)
hs.append(h)
if self.n_blocks > 1:
h = self.msf(hs, y, output_shape)
else:
h = hs[0]
h = self.crp(h, y)
h = self.output_convs(h, y)
return h
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, adjust_padding=False):
super().__init__()
if not adjust_padding:
conv = nn.Conv3d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
self.conv = conv
else:
conv = nn.Conv3d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
self.conv = nn.Sequential(
nn.ZeroPad3d((1, 0, 1, 0)),
conv
)
def forward(self, inputs):
output = self.conv(inputs)
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
return output
class MeanPoolConv(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True):
super().__init__()
self.conv = nn.Conv3d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
def forward(self, inputs):
output = inputs
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
return self.conv(output)
class UpsampleConv(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True):
super().__init__()
self.conv = nn.Conv3d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
self.pixelshuffle = nn.PixelShuffle(upscale_factor=2)
def forward(self, inputs):
output = inputs
output = torch.cat([output, output, output, output], dim=1)
output = self.pixelshuffle(output)
return self.conv(output)
class ConditionalResidualBlock(nn.Module):
def __init__(self, input_dim, output_dim, num_classes, resample=1, act=nn.ELU(),
normalization=ConditionalInstanceNorm3dPlus, adjust_padding=False, dilation=None):
super().__init__()
self.non_linearity = act
self.input_dim = input_dim
self.output_dim = output_dim
self.resample = resample
self.normalization = normalization
if resample == 'down':
if dilation > 1:
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation)
self.normalize2 = normalization(input_dim, num_classes)
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
else:
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
self.normalize2 = normalization(input_dim, num_classes)
self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding)
conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding)
elif resample is None:
if dilation > 1:
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
self.normalize2 = normalization(output_dim, num_classes)
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation)
else:
conv_shortcut = nn.Conv3d
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
self.normalize2 = normalization(output_dim, num_classes)
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
else:
raise Exception('invalid resample value')
if output_dim != input_dim or resample is not None:
self.shortcut = conv_shortcut(input_dim, output_dim)
self.normalize1 = normalization(input_dim, num_classes)
def forward(self, x, y):
output = self.normalize1(x, y)
output = self.non_linearity(output)
output = self.conv1(output)
output = self.normalize2(output, y)
output = self.non_linearity(output)
output = self.conv2(output)
if self.output_dim == self.input_dim and self.resample is None:
shortcut = x
else:
shortcut = self.shortcut(x)
return shortcut + output
class ResidualBlock(nn.Module):
def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
normalization=nn.InstanceNorm3d, adjust_padding=False, dilation=1):
super().__init__()
self.non_linearity = act
self.input_dim = input_dim
self.output_dim = output_dim
self.resample = resample
self.normalization = normalization
if resample == 'down':
if dilation > 1:
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation)
self.normalize2 = normalization(input_dim)
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
else:
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
self.normalize2 = normalization(input_dim)
self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding)
conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding)
elif resample is None:
if dilation > 1:
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation)
else:
# conv_shortcut = nn.Conv3d ### Something wierd here.
conv_shortcut = partial(ncsn_conv1x1)
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
else:
raise Exception('invalid resample value')
if output_dim != input_dim or resample is not None:
self.shortcut = conv_shortcut(input_dim, output_dim)
self.normalize1 = normalization(input_dim)
def forward(self, x):
output = self.normalize1(x)
output = self.non_linearity(output)
output = self.conv1(output)
output = self.normalize2(output)
output = self.non_linearity(output)
output = self.conv2(output)
if self.output_dim == self.input_dim and self.resample is None:
shortcut = x
else:
shortcut = self.shortcut(x)
return shortcut + output
###########################################################################
# Functions below are ported over from the DDPM codebase:
# https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py
###########################################################################
def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000):
assert len(timesteps.shape) == 1 # and timesteps.dtype == tf.int32
half_dim = embedding_dim // 2
# magic number 10000 is from transformers
emb = math.log(max_positions) / (half_dim - 1)
# emb = math.log(2.) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb)
# emb = tf.range(num_embeddings, dtype=jnp.float32)[:, None] * emb[None, :]
# emb = tf.cast(timesteps, dtype=jnp.float32)[:, None] * emb[None, :]
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = F.pad(emb, (0, 1), mode='constant')
assert emb.shape == (timesteps.shape[0], embedding_dim)
return emb
def _einsum(a, b, c, x, y):
einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c))
return torch.einsum(einsum_str, x, y)
def contract_inner(x, y):
"""tensordot(x, y, 1)."""
x_chars = list(string.ascii_lowercase[:len(x.shape)])
y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x.shape)])
y_chars[0] = x_chars[-1] # first axis of y and last of x get summed
out_chars = x_chars[:-1] + y_chars[1:]
return _einsum(x_chars, y_chars, out_chars, x, y)
class NIN(nn.Module):
def __init__(self, in_dim, num_units, init_scale=0.1):
super().__init__()
self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True)
self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
def forward(self, x):
x = x.permute(0, 2, 3, 4, 1)
y = contract_inner(x, self.W) + self.b
return y.permute(0, 4, 1, 2, 3)
class AttnBlock(nn.Module):
"""Channel-wise self-attention block."""
def __init__(self, channels):
super().__init__()
self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6)
self.NIN_0 = NIN(channels, channels)
self.NIN_1 = NIN(channels, channels)
self.NIN_2 = NIN(channels, channels)
self.NIN_3 = NIN(channels, channels, init_scale=0.)
def forward(self, x):
B, C, D, H, W = x.shape
h = self.GroupNorm_0(x)
q = self.NIN_0(h)
k = self.NIN_1(h)
v = self.NIN_2(h)
w = torch.einsum('bcdhw,bckij->bdhwkij', q, k) * (int(C) ** (-0.5))
w = torch.reshape(w, (B, D, H, W, D * H * W))
w = F.softmax(w, dim=-1)
w = torch.reshape(w, (B, D, H, W, D, H, W))
h = torch.einsum('bdhwkij,bckij->bcdhw', w, v)
h = self.NIN_3(h)
return x + h
class Upsample(nn.Module):
def __init__(self, channels, with_conv=False):
super().__init__()
if with_conv:
self.Conv_0 = ddpm_conv3x3(channels, channels)
self.with_conv = with_conv
def forward(self, x):
B, C, D, H, W = x.shape
h = F.interpolate(x, (D * 2, H * 2, W * 2), mode='nearest')
if self.with_conv:
h = self.Conv_0(h)
return h
class Downsample(nn.Module):
def __init__(self, channels, with_conv=False):
super().__init__()
if with_conv:
self.Conv_0 = ddpm_conv3x3(channels, channels, stride=2, padding=0)
self.with_conv = with_conv
def forward(self, x):
B, C, D, H, W = x.shape
# Emulate 'SAME' padding
if self.with_conv:
x = F.pad(x, (0, 1, 0, 1, 0, 1))
x = self.Conv_0(x)
else:
x = F.avg_pool3d(x, kernel_size=2, stride=2, padding=0)
assert x.shape == (B, C, D // 2, H // 2, W // 2)
return x
class ResnetBlockDDPM(nn.Module):
"""The ResNet Blocks used in DDPM."""
def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False, dropout=0.1):
super().__init__()
if out_ch is None:
out_ch = in_ch
self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=in_ch, eps=1e-6)
self.act = act
self.Conv_0 = ddpm_conv3x3(in_ch, out_ch)
if temb_dim is not None:
self.Dense_0 = nn.Linear(temb_dim, out_ch)
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
nn.init.zeros_(self.Dense_0.bias)
self.GroupNorm_1 = nn.GroupNorm(num_groups=32, num_channels=out_ch, eps=1e-6)
self.Dropout_0 = nn.Dropout(dropout)
self.Conv_1 = ddpm_conv3x3(out_ch, out_ch, init_scale=0.)
if in_ch != out_ch:
if conv_shortcut:
self.Conv_2 = ddpm_conv3x3(in_ch, out_ch)
else:
self.NIN_0 = NIN(in_ch, out_ch)
self.out_ch = out_ch
self.in_ch = in_ch
self.conv_shortcut = conv_shortcut
def forward(self, x, temb=None):
B, C, D, H, W = x.shape
assert C == self.in_ch
out_ch = self.out_ch if self.out_ch else self.in_ch
h = self.act(self.GroupNorm_0(x))
h = self.Conv_0(h)
# Add bias to each feature map conditioned on the time embedding
if temb is not None:
h += self.Dense_0(self.act(temb))[:, :, None, None, None]
h = self.act(self.GroupNorm_1(h))
h = self.Dropout_0(h)
h = self.Conv_1(h)
if C != out_ch:
if self.conv_shortcut:
x = self.Conv_2(x)
else:
x = self.NIN_0(x)
return x + h
# class PositionalEncoding(nn.Module):
# def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
# super().__init__()
# self.dropout = nn.Dropout(p=dropout)
# position = torch.arange(max_len).unsqueeze(1)
# div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
# pe = torch.zeros(max_len, 1, d_model)
# pe[:, 0, 0::2] = torch.sin(position * div_term)
# pe[:, 0, 1::2] = torch.cos(position * div_term)
# self.register_buffer('pe', pe)
# def forward(self, x: Tensor) -> Tensor:
# """
# Args:
# x: Tensor, shape [seq_len, batch_size, embedding_dim]
# """
# x = x + self.pe[:x.size(0)]
# return self.dropout(x)
class ResnetBlockDDPMPosEncoding(nn.Module):
"""The ResNet Blocks used in DDPM."""
def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False, dropout=0.1, img_size=64):
super().__init__()
##### Pos Encoding
coord_x, coord_y, coord_z = torch.meshgrid(torch.arange(img_size), torch.arange(img_size), torch.arange(img_size))
coords = torch.stack([coord_x, coord_y, coord_z])
self.num_freq = int(np.log2(img_size))
pos_encoding = torch.zeros(1, 2 * self.num_freq, 3, img_size, img_size, img_size)
with torch.no_grad():
for i in range(self.num_freq):
pos_encoding[0, 2*i, :, :, :, :] = torch.cos((i+1) * np.pi * coords)
pos_encoding[0, 2*i + 1, :, :, :, :] = torch.sin((i+1) * np.pi * coords)
self.pos_encoding = nn.Parameter(
pos_encoding.view(1, 2 * self.num_freq * 3, img_size, img_size, img_size) / img_size,
requires_grad=False
)
####
if out_ch is None:
out_ch = in_ch
self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=in_ch, eps=1e-6)
self.act = act
self.Conv_0 = ddpm_conv3x3(in_ch, out_ch)
self.Conv_0_pos = ddpm_conv3x3(2 * self.num_freq * 3, out_ch)
if temb_dim is not None:
self.Dense_0 = nn.Linear(temb_dim, out_ch)
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
nn.init.zeros_(self.Dense_0.bias)
self.GroupNorm_1 = nn.GroupNorm(num_groups=32, num_channels=out_ch, eps=1e-6)
self.Dropout_0 = nn.Dropout(dropout)
self.Conv_1 = ddpm_conv3x3(out_ch, out_ch, init_scale=0.)
if in_ch != out_ch:
if conv_shortcut:
self.Conv_2 = ddpm_conv3x3(in_ch, out_ch)
else:
self.NIN_0 = NIN(in_ch, out_ch)
self.out_ch = out_ch
self.in_ch = in_ch
self.conv_shortcut = conv_shortcut
def forward(self, x, temb=None):
B, C, D, H, W = x.shape
assert C == self.in_ch
out_ch = self.out_ch if self.out_ch else self.in_ch
h = self.act(self.GroupNorm_0(x))
h = self.Conv_0(h) + self.Conv_0_pos(self.pos_encoding).expand(h.size(0), -1, -1, -1, -1)
# Add bias to each feature map conditioned on the time embedding
if temb is not None:
h += self.Dense_0(self.act(temb))[:, :, None, None, None]
h = self.act(self.GroupNorm_1(h))
h = self.Dropout_0(h)
h = self.Conv_1(h)
if C != out_ch:
if self.conv_shortcut:
x = self.Conv_2(x)
else:
x = self.NIN_0(x)
return x + h