MeshDiffusion/lib/diffusion/models/ddpm_res64.py

200 wiersze
6.7 KiB
Python

# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
"""DDPM model.
This code is the pytorch equivalent of:
https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/models/unet.py
"""
import torch
import torch.nn as nn
import functools
import numpy as np
from . import utils, layers, normalization
# RefineBlock = layers.RefineBlock
# ResidualBlock = layers.ResidualBlock
ResnetBlockDDPM = layers.ResnetBlockDDPM
Upsample = layers.Upsample
Downsample = layers.Downsample
conv3x3 = layers.ddpm_conv3x3
get_act = layers.get_act
get_normalization = normalization.get_normalization
default_initializer = layers.default_init
@utils.register_model(name='ddpm_res64')
class DDPMRes64(nn.Module):
def __init__(self, config):
super().__init__()
self.act = act = get_act(config)
self.register_buffer('sigmas', torch.tensor(utils.get_sigmas(config)))
self.nf = nf = config.model.nf
ch_mult = config.model.ch_mult
self.num_res_blocks = num_res_blocks = config.model.num_res_blocks
self.attn_resolutions = attn_resolutions = config.model.attn_resolutions
dropout = config.model.dropout
resamp_with_conv = config.model.resamp_with_conv
self.num_resolutions = num_resolutions = len(ch_mult)
self.all_resolutions = all_resolutions = [config.data.image_size // (2 ** i) for i in range(num_resolutions)]
AttnBlock = functools.partial(layers.AttnBlock)
self.conditional = conditional = config.model.conditional
ResnetBlock = functools.partial(ResnetBlockDDPM, act=act, temb_dim=4 * nf, dropout=dropout)
if conditional:
# Condition on noise levels.
modules = [nn.Linear(nf, nf * 4)]
modules[0].weight.data = default_initializer()(modules[0].weight.data.shape)
nn.init.zeros_(modules[0].bias)
modules.append(nn.Linear(nf * 4, nf * 4))
modules[1].weight.data = default_initializer()(modules[1].weight.data.shape)
nn.init.zeros_(modules[1].bias)
self.centered = config.data.centered
channels = config.data.num_channels
##### Pos Encoding
self.img_size = img_size = config.data.image_size
self.num_freq = int(np.log2(img_size))
coord_x, coord_y, coord_z = torch.meshgrid(torch.arange(img_size), torch.arange(img_size), torch.arange(img_size))
self.coords = torch.nn.Parameter(
torch.stack([coord_x, coord_y, coord_z]).view(1, 3, img_size, img_size, img_size) * 0.0,
requires_grad=False
)
####
### Mask
self.mask = torch.nn.Parameter(torch.zeros(1, 1, img_size, img_size, img_size), requires_grad=False)
# Downsampling block
self.pos_layer = conv3x3(3, nf)
self.mask_layer = conv3x3(1, nf)
modules.append(conv3x3(channels, nf))
hs_c = [nf]
in_ch = nf
for i_level in range(num_resolutions):
# Residual blocks for this resolution
for i_block in range(num_res_blocks):
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
hs_c.append(in_ch)
if i_level != num_resolutions - 1:
modules.append(Downsample(channels=in_ch, with_conv=resamp_with_conv))
hs_c.append(in_ch)
in_ch = hs_c[-1]
modules.append(ResnetBlock(in_ch=in_ch))
modules.append(AttnBlock(channels=in_ch))
modules.append(ResnetBlock(in_ch=in_ch))
# Upsampling block
for i_level in reversed(range(num_resolutions)):
for i_block in range(num_res_blocks + 1):
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
if i_level != 0:
modules.append(Upsample(channels=in_ch, with_conv=resamp_with_conv))
assert not hs_c
modules.append(nn.GroupNorm(num_channels=in_ch, num_groups=32, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=0.))
self.all_modules = nn.ModuleList(modules)
self.scale_by_sigma = config.model.scale_by_sigma
def forward(self, x, labels):
modules = self.all_modules
m_idx = 0
if self.conditional:
# timestep/scale embedding
timesteps = labels
temb = layers.get_timestep_embedding(timesteps, self.nf)
temb = modules[m_idx](temb)
m_idx += 1
temb = modules[m_idx](self.act(temb))
m_idx += 1
else:
temb = None
if self.centered:
# Input is in [-1, 1]
h = x
else:
# Input is in [0, 1]
h = 2 * x - 1.
# Downsampling block
hs = [modules[m_idx](h) + self.pos_layer(self.coords) + self.mask_layer(self.mask)]
m_idx += 1
for i_level in range(self.num_resolutions):
# Residual blocks for this resolution
for i_block in range(self.num_res_blocks):
h = modules[m_idx](hs[-1], temb)
m_idx += 1
if h.shape[-1] in self.attn_resolutions:
h = modules[m_idx](h)
m_idx += 1
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(modules[m_idx](hs[-1]))
m_idx += 1
h = hs[-1]
h = modules[m_idx](h, temb)
m_idx += 1
h = modules[m_idx](h)
m_idx += 1
h = modules[m_idx](h, temb)
m_idx += 1
# Upsampling block
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
hspop = hs.pop()
input = torch.cat([h, hspop], dim=1)
h = modules[m_idx](input, temb)
m_idx += 1
if h.shape[-1] in self.attn_resolutions:
h = modules[m_idx](h)
m_idx += 1
if i_level != 0:
h = modules[m_idx](h)
m_idx += 1
assert not hs
h = self.act(modules[m_idx](h))
m_idx += 1
h = modules[m_idx](h)
m_idx += 1
assert m_idx == len(modules)
if self.scale_by_sigma:
# Divide the output by sigmas. Useful for training with the NCSN loss.
# The DDPM loss scales the network output by sigma in the loss function,
# so no need of doing it here.
used_sigmas = self.sigmas[labels, None, None, None]
h = h / used_sigmas
return h