MeshDiffusion/lib/diffusion/sampling.py

571 wiersze
23 KiB
Python

# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
# pytype: skip-file
"""Various sampling methods."""
import functools
import torch
import numpy as np
import abc
from .models.utils import from_flattened_numpy, to_flattened_numpy, get_score_fn
from scipy import integrate
from . import sde_lib
from .models import utils as mutils
import logging
import tqdm
_CORRECTORS = {}
_PREDICTORS = {}
def register_predictor(cls=None, *, name=None):
"""A decorator for registering predictor classes."""
def _register(cls):
if name is None:
local_name = cls.__name__
else:
local_name = name
if local_name in _PREDICTORS:
raise ValueError(f'Already registered model with name: {local_name}')
_PREDICTORS[local_name] = cls
return cls
if cls is None:
return _register
else:
return _register(cls)
def register_corrector(cls=None, *, name=None):
"""A decorator for registering corrector classes."""
def _register(cls):
if name is None:
local_name = cls.__name__
else:
local_name = name
if local_name in _CORRECTORS:
raise ValueError(f'Already registered model with name: {local_name}')
_CORRECTORS[local_name] = cls
return cls
if cls is None:
return _register
else:
return _register(cls)
def get_predictor(name):
return _PREDICTORS[name]
def get_corrector(name):
return _CORRECTORS[name]
def get_sampling_fn(config, sde, shape, inverse_scaler, eps, grid_mask=None, return_traj=False):
"""Create a sampling function.
Args:
config: A `ml_collections.ConfigDict` object that contains all configuration information.
sde: A `sde_lib.SDE` object that represents the forward SDE.
shape: A sequence of integers representing the expected shape of a single sample.
inverse_scaler: The inverse data normalizer function.
eps: A `float` number. The reverse-time SDE is only integrated to `eps` for numerical stability.
Returns:
A function that takes random states and a replicated training state and outputs samples with the
trailing dimensions matching `shape`.
"""
sampler_name = config.sampling.method
# Probability flow ODE sampling with black-box ODE solvers
# Predictor-Corrector sampling. Predictor-only and Corrector-only samplers are special cases.
if sampler_name.lower() == 'pc':
predictor = get_predictor(config.sampling.predictor.lower())
corrector = get_corrector(config.sampling.corrector.lower())
sampling_fn = get_pc_sampler(sde=sde,
shape=shape,
predictor=predictor,
corrector=corrector,
inverse_scaler=inverse_scaler,
snr=config.sampling.snr,
n_steps=config.sampling.n_steps_each,
probability_flow=config.sampling.probability_flow,
continuous=config.training.continuous,
denoise=config.sampling.noise_removal,
eps=eps,
device=config.device,
grid_mask=grid_mask,
return_traj=return_traj)
elif sampler_name.lower() == 'ddim':
predictor = get_predictor('ddim')
sampling_fn = get_ddim_sampler(sde=sde,
shape=shape,
predictor=predictor,
inverse_scaler=inverse_scaler,
n_steps=config.sampling.n_steps_each,
denoise=config.sampling.noise_removal,
eps=eps,
device=config.device,
grid_mask=grid_mask)
else:
raise ValueError(f"Sampler name {sampler_name} unknown.")
return sampling_fn
class Predictor(abc.ABC):
"""The abstract class for a predictor algorithm."""
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__()
self.sde = sde
# Compute the reverse SDE/ODE
self.rsde = sde.reverse(score_fn, probability_flow)
self.score_fn = score_fn
@abc.abstractmethod
def update_fn(self, x, t):
"""One update of the predictor.
Args:
x: A PyTorch tensor representing the current state
t: A Pytorch tensor representing the current time step.
Returns:
x: A PyTorch tensor of the next state.
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
"""
pass
class Corrector(abc.ABC):
"""The abstract class for a corrector algorithm."""
def __init__(self, sde, score_fn, snr, n_steps):
super().__init__()
self.sde = sde
self.score_fn = score_fn
self.snr = snr
self.n_steps = n_steps
@abc.abstractmethod
def update_fn(self, x, t):
"""One update of the corrector.
Args:
x: A PyTorch tensor representing the current state
t: A PyTorch tensor representing the current time step.
Returns:
x: A PyTorch tensor of the next state.
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
"""
pass
@register_predictor(name='euler_maruyama')
class EulerMaruyamaPredictor(Predictor):
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__(sde, score_fn, probability_flow)
def update_fn(self, x, t):
dt = -1. / self.rsde.N
z = torch.randn_like(x)
drift, diffusion = self.rsde.sde(x, t)
x_mean = x + drift * dt
x = x_mean + diffusion[:, None, None, None, None] * np.sqrt(-dt) * z
return x, x_mean
@register_predictor(name='reverse_diffusion')
class ReverseDiffusionPredictor(Predictor):
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__(sde, score_fn, probability_flow)
def update_fn(self, x, t):
f, G = self.rsde.discretize(x, t)
z = torch.randn_like(x)
x_mean = x - f
x = x_mean + G[:, None, None, None, None] * z
return x, x_mean
@register_predictor(name='ancestral_sampling')
class AncestralSamplingPredictor(Predictor):
"""The ancestral sampling predictor. Currently only supports VE/VP SDEs."""
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__(sde, score_fn, probability_flow)
if not isinstance(sde, sde_lib.VPSDE):
raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.")
assert not probability_flow, "Probability flow not supported by ancestral sampling"
def vpsde_update_fn(self, x, t):
sde = self.sde
timestep = (t * (sde.N - 1) / sde.T).long()
beta = sde.discrete_betas.to(t.device)[timestep]
score = self.score_fn(x, t)
x_mean = (x + beta[:, None, None, None, None] * score) / torch.sqrt(1. - beta)[:, None, None, None, None]
noise = torch.randn_like(x)
x = x_mean + torch.sqrt(beta)[:, None, None, None, None] * noise
return x, x_mean
def update_fn(self, x, t):
if isinstance(self.sde, sde_lib.VPSDE):
return self.vpsde_update_fn(x, t)
else:
raise NotImplementedError
@register_predictor(name='none')
class NonePredictor(Predictor):
"""An empty predictor that does nothing."""
def __init__(self, sde, score_fn, probability_flow=False):
pass
def update_fn(self, x, t):
return x, x
@register_predictor(name='ddim')
class DDIMPredictor(Predictor):
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__(sde, score_fn, probability_flow)
def update_fn(self, x, t, tprev=None):
x, x0_pred = self.rsde.discretize_ddim(x, t, tprev=tprev)
return x, x0_pred
@register_corrector(name='langevin')
class LangevinCorrector(Corrector):
def __init__(self, sde, score_fn, snr, n_steps):
super().__init__(sde, score_fn, snr, n_steps)
if not isinstance(sde, sde_lib.VPSDE):
raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.")
def update_fn(self, x, t):
sde = self.sde
score_fn = self.score_fn
n_steps = self.n_steps
target_snr = self.snr
if isinstance(sde, sde_lib.VPSDE):
timestep = (t * (sde.N - 1) / sde.T).long()
alpha = sde.alphas.to(t.device)[timestep]
else:
alpha = torch.ones_like(t)
for i in range(n_steps):
grad = score_fn(x, t)
noise = torch.randn_like(x)
grad_norm = torch.norm(grad.reshape(grad.shape[0], -1), dim=-1).mean()
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
step_size = (target_snr * noise_norm / grad_norm) ** 2 * 2 * alpha
x_mean = x + step_size[:, None, None, None, None] * grad
x = x_mean + torch.sqrt(step_size * 2)[:, None, None, None, None] * noise
return x, x_mean
@register_corrector(name='ald')
class AnnealedLangevinDynamics(Corrector):
"""The original annealed Langevin dynamics predictor in NCSN/NCSNv2.
We include this corrector only for completeness. It was not directly used in our paper.
"""
def __init__(self, sde, score_fn, snr, n_steps):
super().__init__(sde, score_fn, snr, n_steps)
if not isinstance(sde, sde_lib.VPSDE):
raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.")
def update_fn(self, x, t):
sde = self.sde
score_fn = self.score_fn
n_steps = self.n_steps
target_snr = self.snr
if isinstance(sde, sde_lib.VPSDE):
timestep = (t * (sde.N - 1) / sde.T).long()
alpha = sde.alphas.to(t.device)[timestep]
else:
alpha = torch.ones_like(t)
std = self.sde.marginal_prob(x, t)[1]
for i in range(n_steps):
grad = score_fn(x, t)
noise = torch.randn_like(x)
step_size = (target_snr * std) ** 2 * 2 * alpha
x_mean = x + step_size[:, None, None, None, None] * grad
x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None, None]
return x, x_mean
@register_corrector(name='none')
class NoneCorrector(Corrector):
"""An empty corrector that does nothing."""
def __init__(self, sde, score_fn, snr, n_steps):
pass
def update_fn(self, x, t):
return x, x
def shared_predictor_update_fn(x, t, sde, model, predictor, probability_flow, continuous):
"""A wrapper that configures and returns the update function of predictors."""
score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous)
if predictor is None:
# Corrector-only sampler
predictor_obj = NonePredictor(sde, score_fn, probability_flow)
else:
predictor_obj = predictor(sde, score_fn, probability_flow)
return predictor_obj.update_fn(x, t)
def shared_corrector_update_fn(x, t, sde, model, corrector, continuous, snr, n_steps):
"""A wrapper tha configures and returns the update function of correctors."""
score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous)
if corrector is None:
# Predictor-only sampler
corrector_obj = NoneCorrector(sde, score_fn, snr, n_steps)
else:
corrector_obj = corrector(sde, score_fn, snr, n_steps)
return corrector_obj.update_fn(x, t)
def get_pc_sampler(sde, shape, predictor, corrector, inverse_scaler, snr,
n_steps=1, probability_flow=False, continuous=False,
denoise=True, eps=1e-3, device='cuda', grid_mask=None, return_traj=False):
"""Create a Predictor-Corrector (PC) sampler.
Args:
sde: An `sde_lib.SDE` object representing the forward SDE.
shape: A sequence of integers. The expected shape of a single sample.
predictor: A subclass of `sampling.Predictor` representing the predictor algorithm.
corrector: A subclass of `sampling.Corrector` representing the corrector algorithm.
inverse_scaler: The inverse data normalizer.
snr: A `float` number. The signal-to-noise ratio for configuring correctors.
n_steps: An integer. The number of corrector steps per predictor update.
probability_flow: If `True`, solve the reverse-time probability flow ODE when running the predictor.
continuous: `True` indicates that the score model was continuously trained.
denoise: If `True`, add one-step denoising to the final samples.
eps: A `float` number. The reverse-time SDE and ODE are integrated to `epsilon` to avoid numerical issues.
device: PyTorch device.
Returns:
A sampling function that returns samples and the number of function evaluations during sampling.
"""
# Create predictor & corrector update functions
predictor_update_fn = functools.partial(shared_predictor_update_fn,
sde=sde,
predictor=predictor,
probability_flow=probability_flow,
continuous=continuous)
corrector_update_fn = functools.partial(shared_corrector_update_fn,
sde=sde,
corrector=corrector,
continuous=continuous,
snr=snr,
n_steps=n_steps)
def pc_sampler(model,
partial=None, partial_mask=None, partial_channel=0,
freeze_iters=None):
""" The PC sampler funciton.
Args:
model: A score model.
Returns:
Samples, number of function evaluations.
"""
with torch.no_grad():
if freeze_iters is None:
freeze_iters = sde.N + 10 # just some randomly large number greater than sde.N
timesteps = torch.linspace(sde.T, eps, sde.N, device=device)
def compute_xzero(sde, model, x, t, grid_mask_input):
timestep_int = (t * (sde.N - 1) / sde.T).long()
alphas1 = sde.sqrt_alphas_cumprod[timestep_int].cuda()
alphas2 = sde.sqrt_1m_alphas_cumprod[timestep_int].cuda()
alphas1_prev = sde.sqrt_alphas_cumprod[timestep_int - 1].cuda()
alphas2_prev = sde.sqrt_1m_alphas_cumprod[timestep_int - 1].cuda()
score_pred = model(x, t * torch.ones(shape[0], device=x.device))
x0_pred_scaled = (x - alphas2 * score_pred)
x0_pred = x0_pred_scaled / alphas1
x0_pred = x0_pred.clamp(-1, 1)
return x0_pred * grid_mask_input
# Initial sample
x = sde.prior_sampling(shape).to(device)
assert len(x.size()) == 5
x = x * grid_mask
traj_buffer = []
if partial is not None:
assert len(partial.size()) == 5
t = timesteps[0]
vec_t = torch.ones(shape[0], device=t.device) * t
x[:, partial_channel] = partial[:, partial_channel] * grid_mask[:, partial_channel]
partial_mean, partial_std = sde.marginal_prob(x, vec_t)
sampled_update = partial_mean[:, partial_channel] + partial_std[:, None, None, None, None] * torch.randn_like(partial_mean[:, partial_channel], device=partial_std.device)
x[:, partial_channel] = (
x[:, partial_channel] * (1 - partial_mask[:, partial_channel])
+ sampled_update[:, partial_channel] * partial_mask[:, partial_channel]
) * grid_mask[:, partial_channel]
if partial is not None:
x_mean = x
for i in tqdm.trange(sde.N):
t = timesteps[i]
vec_t = torch.ones(shape[0], device=t.device) * t
x, x_mean = corrector_update_fn(x, vec_t, model=model)
x, x_mean = x * grid_mask, x_mean * grid_mask
x, x_mean = predictor_update_fn(x, vec_t, model=model)
x, x_mean = x * grid_mask, x_mean * grid_mask
if i != sde.N - 1 and i < freeze_iters:
x[:, partial_channel] = (x[:, partial_channel] * (1 - partial_mask[:, partial_channel]) + partial[:, partial_channel] * partial_mask[:, partial_channel]) * grid_mask[:, partial_channel]
x_mean[:, partial_channel] = (x_mean[:, partial_channel] * (1 - partial_mask[:, partial_channel]) + partial[:, partial_channel] * partial_mask[:, partial_channel]) * grid_mask[:, partial_channel]
### add noise to the condition x0_star
partial_mean, partial_std = sde.marginal_prob(x, timesteps[i] * torch.ones(shape[0], device=t.device))
sampled_update = partial_mean[:, partial_channel] + partial_std[:, None, None, None] * torch.randn_like(partial_mean[:, partial_channel], device=partial_std.device)
x[:, partial_channel] = (
x[:, partial_channel] * (1 - partial_mask[:, partial_channel])
+ sampled_update * partial_mask[:, partial_channel]
) * grid_mask[:, partial_channel]
x_mean[:, partial_channel] = x[:, partial_channel]
else:
for i in tqdm.trange(sde.N - 1):
t = timesteps[i]
vec_t = torch.ones(shape[0], device=t.device) * t
x, x_mean = corrector_update_fn(x, vec_t, model=model)
x, x_mean = x * grid_mask, x_mean * grid_mask
x, x_mean = predictor_update_fn(x, vec_t, model=model)
x, x_mean = x * grid_mask, x_mean * grid_mask
if return_traj and i >= 700 and i % 10 == 0:
traj_buffer.append(compute_xzero(sde, model, x, t, grid_mask))
if return_traj:
return traj_buffer, sde.N * (n_steps + 1)
return inverse_scaler(x_mean if denoise else x), sde.N * (n_steps + 1)
return pc_sampler
def ddim_predictor_update_fn(x, t, tprev, sde, model, predictor, probability_flow, continuous):
"""A wrapper that configures and returns the update function of predictors."""
assert not continuous
score_fn = mutils.get_score_fn(sde, model, train=False, continuous=False, std_scale=False)
if predictor is None:
# Corrector-only sampler
predictor_obj = NonePredictor(sde, score_fn, probability_flow)
else:
predictor_obj = predictor(sde, score_fn, probability_flow)
return predictor_obj.update_fn(x, t, tprev)
def get_ddim_sampler(sde, shape, predictor, inverse_scaler, n_steps=1,
denoise=False, eps=1e-3, device='cuda', grid_mask=None):
"""Probability flow ODE sampler with the black-box ODE solver.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
shape: A sequence of integers. The expected shape of a single sample.
inverse_scaler: The inverse data normalizer.
denoise: If `True`, add one-step denoising to final samples.
eps: A `float` number. The reverse-time SDE/ODE will be integrated to `eps` for numerical stability.
device: PyTorch device.
Returns:
A sampling function that returns samples and the number of function evaluations during sampling.
"""
predictor_update_fn = functools.partial(ddim_predictor_update_fn,
sde=sde,
predictor=predictor,
probability_flow=False,
continuous=False)
def ddim_sampler(model, schedule='quad', num_steps=100, x0=None,
partial=None, partial_mask=None, partial_channel=0):
""" The PC sampler funciton.
Args:
model: A score model.
Returns:
Samples, number of function evaluations.
"""
with torch.no_grad():
if x0 is not None:
x = x0 * grid_mask
else:
# Initial sample
x = sde.prior_sampling(shape).to(device)
x = x * grid_mask
if partial is not None:
x[:, partial_channel] = x[:, partial_channel] * (1 - partial_mask) + partial * partial_mask
timesteps = torch.linspace(sde.T, eps, sde.N, device=device)
if schedule == 'uniform':
skip = sde.N // num_steps
seq = range(0, sde.N, skip)
elif schedule == 'quad':
seq = (
np.linspace(
0, np.sqrt(sde.N * 0.8), 100
)
** 2
)
seq = [int(s) for s in list(seq)]
timesteps = torch.tensor(seq) / sde.N
for i in tqdm.tqdm(reversed(range(1, len(timesteps)))):
t = timesteps[i]
tprev = timesteps[i - 1]
vec_t = torch.ones(shape[0], device=t.device) * t
vec_tprev = torch.ones(shape[0], device=t.device) * tprev
x, x0_pred = predictor_update_fn(x, vec_t, model=model, tprev=vec_tprev)
x, x0_pred = x * grid_mask, x0_pred * grid_mask
if partial is not None:
x[:, partial_channel] = x[:, partial_channel] * (1 - partial_mask) + partial * partial_mask
x0_pred[:, partial_channel] = x0_pred[:, partial_channel] * (1 - partial_mask) + partial * partial_mask
return inverse_scaler(x0_pred * grid_mask if (denoise and not encode) else x * grid_mask), sde.N * (n_steps + 1)
return ddim_sampler