# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Normalization layers.""" import torch.nn as nn import torch import functools def get_normalization(config, conditional=False): """Obtain normalization modules from the config file.""" norm = config.model.normalization if conditional: if norm == 'InstanceNorm++': return functools.partial(ConditionalInstanceNorm3dPlus, num_classes=config.model.num_classes) else: raise NotImplementedError(f'{norm} not implemented yet.') else: if norm == 'InstanceNorm': return nn.InstanceNorm3d elif norm == 'InstanceNorm++': return InstanceNorm3dPlus elif norm == 'VarianceNorm': return VarianceNorm3d elif norm == 'GroupNorm': return nn.GroupNorm else: raise ValueError('Unknown normalization: %s' % norm) class ConditionalBatchNorm3d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.bn = nn.BatchNorm3d(num_features, affine=False) if self.bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): out = self.bn(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=1) out = gamma.view(-1, self.num_features, 1, 1, 1) * out + beta.view(-1, self.num_features, 1, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1, 1) * out return out class ConditionalInstanceNorm3d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm3d(num_features, affine=False, track_running_stats=False) if bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): h = self.instance_norm(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=-1) out = gamma.view(-1, self.num_features, 1, 1, 1) * h + beta.view(-1, self.num_features, 1, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1, 1) * h return out class ConditionalVarianceNorm3d(nn.Module): def __init__(self, num_features, num_classes, bias=False): super().__init__() self.num_features = num_features self.bias = bias self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.normal_(1, 0.02) def forward(self, x, y): vars = torch.var(x, dim=(2, 3, 4), keepdim=True) h = x / torch.sqrt(vars + 1e-5) gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1, 1) * h return out class VarianceNorm3d(nn.Module): def __init__(self, num_features, bias=False): super().__init__() self.num_features = num_features self.bias = bias self.alpha = nn.Parameter(torch.zeros(num_features)) self.alpha.data.normal_(1, 0.02) def forward(self, x): vars = torch.var(x, dim=(2, 3, 4), keepdim=True) h = x / torch.sqrt(vars + 1e-5) out = self.alpha.view(-1, self.num_features, 1, 1, 1) * h return out class ConditionalNoneNorm3d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias if bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): if self.bias: gamma, beta = self.embed(y).chunk(2, dim=-1) out = gamma.view(-1, self.num_features, 1, 1, 1) * x + beta.view(-1, self.num_features, 1, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1, 1) * x return out class NoneNorm3d(nn.Module): def __init__(self, num_features, bias=True): super().__init__() def forward(self, x): return x class InstanceNorm3dPlus(nn.Module): def __init__(self, num_features, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm3d(num_features, affine=False, track_running_stats=False) self.alpha = nn.Parameter(torch.zeros(num_features)) self.gamma = nn.Parameter(torch.zeros(num_features)) self.alpha.data.normal_(1, 0.02) self.gamma.data.normal_(1, 0.02) if bias: self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, x): means = torch.mean(x, dim=(2, 3, 4)) m = torch.mean(means, dim=-1, keepdim=True) v = torch.var(means, dim=-1, keepdim=True) means = (means - m) / (torch.sqrt(v + 1e-5)) h = self.instance_norm(x) if self.bias: h = h + means[..., None, None, None] * self.alpha[..., None, None, None] out = self.gamma.view(-1, self.num_features, 1, 1, 1) * h + self.beta.view(-1, self.num_features, 1, 1, 1) else: h = h + means[..., None, None, None] * self.alpha[..., None, None, None] out = self.gamma.view(-1, self.num_features, 1, 1, 1) * h return out class ConditionalInstanceNorm3dPlus(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm3d(num_features, affine=False, track_running_stats=False) if bias: self.embed = nn.Embedding(num_classes, num_features * 3) self.embed.weight.data[:, :2 * num_features].normal_(1, 0.02) # Initialise scale at N(1, 0.02) self.embed.weight.data[:, 2 * num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, 2 * num_features) self.embed.weight.data.normal_(1, 0.02) def forward(self, x, y): means = torch.mean(x, dim=(2, 3, 4)) m = torch.mean(means, dim=-1, keepdim=True) v = torch.var(means, dim=-1, keepdim=True) means = (means - m) / (torch.sqrt(v + 1e-5)) h = self.instance_norm(x) if self.bias: gamma, alpha, beta = self.embed(y).chunk(3, dim=-1) h = h + means[..., None, None, None] * alpha[..., None, None, None] out = gamma.view(-1, self.num_features, 1, 1, 1) * h + beta.view(-1, self.num_features, 1, 1, 1) else: gamma, alpha = self.embed(y).chunk(2, dim=-1) h = h + means[..., None, None, None] * alpha[..., None, None, None] out = gamma.view(-1, self.num_features, 1, 1, 1) * h return out def lip_weight_normalization_3d(W, softplus_c): """ Lipschitz weight normalization based on the L-infinity norm (see Eq.9 in [Liu et al 2022]) """ absrowsum = torch.sum(torch.abs(W), dim=[1,2,3,4]) + 1e-8 scale = torch.nn.functional.relu(softplus_c/absrowsum - 1.0) + 1.0 return W * scale[:, None, None, None, None]