# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """All functions related to loss computation and optimization. """ import torch import torch.optim as optim import numpy as np from .models import utils as mutils from .sde_lib import VPSDE def get_optimizer(config, params): """Returns a flax optimizer object based on `config`.""" if config.optim.optimizer == 'Adam': optimizer = optim.Adam(params, lr=config.optim.lr, betas=(config.optim.beta1, 0.999), eps=config.optim.eps, weight_decay=config.optim.weight_decay) else: raise NotImplementedError( f'Optimizer {config.optim.optimizer} not supported yet!') return optimizer def optimization_manager(config): """Returns an optimize_fn based on `config`.""" def optimize_fn(optimizer, params, step, lr=config.optim.lr, warmup=config.optim.warmup, grad_clip=config.optim.grad_clip): """Optimizes with warmup and gradient clipping (disabled if negative).""" if warmup > 0: for g in optimizer.param_groups: g['lr'] = lr * np.minimum(step / warmup, 1.0) if grad_clip >= 0: torch.nn.utils.clip_grad_norm_(params, max_norm=grad_clip) optimizer.step() return optimize_fn def get_ddpm_loss_fn(vpsde, train, mask=None, loss_type='l2'): """Legacy code to reproduce previous results on DDPM. Not recommended for new work.""" def loss_fn(model, batch): model_fn = mutils.get_model_fn(model, train=train) labels = torch.randint(0, vpsde.N, (batch.shape[0],), device=batch.device) sqrt_alphas_cumprod = vpsde.sqrt_alphas_cumprod.to(batch.device) sqrt_1m_alphas_cumprod = vpsde.sqrt_1m_alphas_cumprod.to(batch.device) noise = torch.randn_like(batch) perturbed_data = sqrt_alphas_cumprod[labels, None, None, None, None] * batch + \ sqrt_1m_alphas_cumprod[labels, None, None, None, None] * noise perturbed_data = perturbed_data * mask score = model_fn(perturbed_data, labels) if loss_type == 'l2': losses = torch.square(score - noise) elif loss_type == 'l1': losses = torch.abs(score - noise) else: raise NotImplementedError if mask is not None: losses = losses * mask losses = torch.mean(losses.reshape(losses.shape[0], -1), dim=-1) loss = torch.mean(losses) / mask.sum() * np.prod(mask.size()) else: losses = torch.mean(losses.reshape(losses.shape[0], -1), dim=-1) loss = torch.mean(losses) return loss return loss_fn def get_step_fn(sde, train, optimize_fn=None, mask=None, loss_type='l2'): """Create a one-step training/evaluation function. Args: sde: An `sde_lib.SDE` object that represents the forward SDE. optimize_fn: An optimization function. reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions. continuous: `True` indicates that the model is defined to take continuous time steps. likelihood_weighting: If `True`, weight the mixture of score matching losses according to https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended by our paper. Returns: A one-step function for training or evaluation. """ loss_fn = get_ddpm_loss_fn(sde, train, mask=mask, loss_type=loss_type) def step_fn(state, batch, clear_grad=True, update_param=True): """Running one step of training or evaluation. This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together for faster execution. Args: state: A dictionary of training information, containing the score model, optimizer, EMA status, and number of optimization steps. batch: A mini-batch of training/evaluation data. Returns: loss: The average loss value of this state. """ model = state['model'] if train: optimizer = state['optimizer'] if clear_grad: optimizer.zero_grad() loss = loss_fn(model, batch) loss.backward() if update_param: optimize_fn(optimizer, model.parameters(), step=state['step']) state['step'] += 1 state['ema'].update(model.parameters()) else: with torch.no_grad(): ema = state['ema'] ema.store(model.parameters()) ema.copy_to(model.parameters()) loss = loss_fn(model, batch) ema.restore(model.parameters()) return { 'loss': loss, } return step_fn