# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training and evaluation""" from absl import app from absl import flags from ml_collections.config_flags import config_flags import lib.diffusion.trainer as trainer import lib.diffusion.evaler as evaler FLAGS = flags.FLAGS config_flags.DEFINE_config_file( "config", None, "diffusion configs", lock_config=False) flags.DEFINE_enum("mode", None, ["train", "uncond_gen", "cond_gen"], "Running mode") flags.mark_flags_as_required(["config", "mode"]) def main(argv): if FLAGS.mode == 'train': trainer.train(FLAGS.config) elif FLAGS.mode == 'uncond_gen': evaler.uncond_gen(FLAGS.config) elif FLAGS.mode == 'cond_gen': evaler.cond_gen(FLAGS.config) if __name__ == "__main__": app.run(main)