MCUME/MCUME_teensy/teensymsx/Z80.c

584 wiersze
19 KiB
C

/** Z80: portable Z80 emulator *******************************/
/** **/
/** Z80.c **/
/** **/
/** This file contains implementation for Z80 CPU. Don't **/
/** forget to provide RdZ80(), WrZ80(), InZ80(), OutZ80(), **/
/** LoopZ80(), and PatchZ80() functions to accomodate the **/
/** emulated machine's architecture. **/
/** **/
/** Copyright (C) Marat Fayzullin 1994-1998 **/
/** You are not allowed to distribute this software **/
/** commercially. Please, notify me, if you make any **/
/** changes to this file. **/
/*************************************************************/
#include "shared.h" // For endianess!!!
#include "Z80.h"
#include "Tables.h"
/** INLINE ***************************************************/
/** Different compilers inline C functions differently. **/
/*************************************************************/
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE static
#endif
/** System-Dependent Stuff ***********************************/
/** This is system-dependent code put here to speed things **/
/** up. It has to stay inlined to be fast. **/
/*************************************************************/
#ifdef COLEM
extern byte *RAM;
INLINE byte RdZ80(word A) { return(RAM[A]); }
#endif
#ifdef MG
extern byte *Page[];
INLINE byte RdZ80(word A) { return(Page[A>>13][A&0x1FFF]); }
#endif
#ifdef FMSX
extern byte *RAM[],PSL[],SSLReg;
INLINE byte RdZ80(word A)
{
if(A!=0xFFFF) return(RAM[A>>13][A&0x1FFF]);
else return((PSL[3]==3)? ~SSLReg:RAM[7][0x1FFF]);
}
#endif
#define S(Fl) R->AF.B.l|=Fl
#define R(Fl) R->AF.B.l&=~(Fl)
#define FLAGS(Rg,Fl) R->AF.B.l=Fl|ZSTable[Rg]
#define M_RLC(Rg) \
R->AF.B.l=Rg>>7;Rg=(Rg<<1)|R->AF.B.l;R->AF.B.l|=PZSTable[Rg]
#define M_RRC(Rg) \
R->AF.B.l=Rg&0x01;Rg=(Rg>>1)|(R->AF.B.l<<7);R->AF.B.l|=PZSTable[Rg]
#define M_RL(Rg) \
if(Rg&0x80) \
{ \
Rg=(Rg<<1)|(R->AF.B.l&C_FLAG); \
R->AF.B.l=PZSTable[Rg]|C_FLAG; \
} \
else \
{ \
Rg=(Rg<<1)|(R->AF.B.l&C_FLAG); \
R->AF.B.l=PZSTable[Rg]; \
}
#define M_RR(Rg) \
if(Rg&0x01) \
{ \
Rg=(Rg>>1)|(R->AF.B.l<<7); \
R->AF.B.l=PZSTable[Rg]|C_FLAG; \
} \
else \
{ \
Rg=(Rg>>1)|(R->AF.B.l<<7); \
R->AF.B.l=PZSTable[Rg]; \
}
#define M_SLA(Rg) \
R->AF.B.l=Rg>>7;Rg<<=1;R->AF.B.l|=PZSTable[Rg]
#define M_SRA(Rg) \
R->AF.B.l=Rg&C_FLAG;Rg=(Rg>>1)|(Rg&0x80);R->AF.B.l|=PZSTable[Rg]
#define M_SLL(Rg) \
R->AF.B.l=Rg>>7;Rg=(Rg<<1)|0x01;R->AF.B.l|=PZSTable[Rg]
#define M_SRL(Rg) \
R->AF.B.l=Rg&0x01;Rg>>=1;R->AF.B.l|=PZSTable[Rg]
#define M_BIT(Bit,Rg) \
R->AF.B.l=(R->AF.B.l&~(N_FLAG|Z_FLAG))|H_FLAG|(Rg&(1<<Bit)? 0:Z_FLAG)
#define M_SET(Bit,Rg) Rg|=1<<Bit
#define M_RES(Bit,Rg) Rg&=~(1<<Bit)
#define M_POP(Rg) \
R->Rg.B.l=RdZ80(R->SP.W++);R->Rg.B.h=RdZ80(R->SP.W++)
#define M_PUSH(Rg) \
WrZ80(--R->SP.W,R->Rg.B.h);WrZ80(--R->SP.W,R->Rg.B.l)
#define M_CALL \
J.B.l=RdZ80(R->PC.W++);J.B.h=RdZ80(R->PC.W++); \
WrZ80(--R->SP.W,R->PC.B.h);WrZ80(--R->SP.W,R->PC.B.l); \
R->PC.W=J.W
#define M_JP J.B.l=RdZ80(R->PC.W++);J.B.h=RdZ80(R->PC.W);R->PC.W=J.W
#define M_JR R->PC.W+=(offset)RdZ80(R->PC.W)+1
#define M_RET R->PC.B.l=RdZ80(R->SP.W++);R->PC.B.h=RdZ80(R->SP.W++)
#define M_RST(Ad) \
WrZ80(--R->SP.W,R->PC.B.h);WrZ80(--R->SP.W,R->PC.B.l);R->PC.W=Ad
#define M_LDWORD(Rg) \
R->Rg.B.l=RdZ80(R->PC.W++);R->Rg.B.h=RdZ80(R->PC.W++)
#define M_ADD(Rg) \
J.W=R->AF.B.h+Rg; \
R->AF.B.l= \
(~(R->AF.B.h^Rg)&(Rg^J.B.l)&0x80? V_FLAG:0)| \
J.B.h|ZSTable[J.B.l]| \
((R->AF.B.h^Rg^J.B.l)&H_FLAG); \
R->AF.B.h=J.B.l
#define M_SUB(Rg) \
J.W=R->AF.B.h-Rg; \
R->AF.B.l= \
((R->AF.B.h^Rg)&(R->AF.B.h^J.B.l)&0x80? V_FLAG:0)| \
N_FLAG|-J.B.h|ZSTable[J.B.l]| \
((R->AF.B.h^Rg^J.B.l)&H_FLAG); \
R->AF.B.h=J.B.l
#define M_ADC(Rg) \
J.W=R->AF.B.h+Rg+(R->AF.B.l&C_FLAG); \
R->AF.B.l= \
(~(R->AF.B.h^Rg)&(Rg^J.B.l)&0x80? V_FLAG:0)| \
J.B.h|ZSTable[J.B.l]| \
((R->AF.B.h^Rg^J.B.l)&H_FLAG); \
R->AF.B.h=J.B.l
#define M_SBC(Rg) \
J.W=R->AF.B.h-Rg-(R->AF.B.l&C_FLAG); \
R->AF.B.l= \
((R->AF.B.h^Rg)&(R->AF.B.h^J.B.l)&0x80? V_FLAG:0)| \
N_FLAG|-J.B.h|ZSTable[J.B.l]| \
((R->AF.B.h^Rg^J.B.l)&H_FLAG); \
R->AF.B.h=J.B.l
#define M_CP(Rg) \
J.W=R->AF.B.h-Rg; \
R->AF.B.l= \
((R->AF.B.h^Rg)&(R->AF.B.h^J.B.l)&0x80? V_FLAG:0)| \
N_FLAG|-J.B.h|ZSTable[J.B.l]| \
((R->AF.B.h^Rg^J.B.l)&H_FLAG)
#define M_AND(Rg) R->AF.B.h&=Rg;R->AF.B.l=H_FLAG|PZSTable[R->AF.B.h]
#define M_OR(Rg) R->AF.B.h|=Rg;R->AF.B.l=PZSTable[R->AF.B.h]
#define M_XOR(Rg) R->AF.B.h^=Rg;R->AF.B.l=PZSTable[R->AF.B.h]
#define M_IN(Rg) Rg=InZ80(R->BC.B.l);R->AF.B.l=PZSTable[Rg]|(R->AF.B.l&C_FLAG)
#define M_INC(Rg) \
Rg++; \
R->AF.B.l= \
(R->AF.B.l&C_FLAG)|ZSTable[Rg]| \
(Rg==0x80? V_FLAG:0)|(Rg&0x0F? 0:H_FLAG)
#define M_DEC(Rg) \
Rg--; \
R->AF.B.l= \
N_FLAG|(R->AF.B.l&C_FLAG)|ZSTable[Rg]| \
(Rg==0x7F? V_FLAG:0)|((Rg&0x0F)==0x0F? H_FLAG:0)
#define M_ADDW(Rg1,Rg2) \
J.W=(R->Rg1.W+R->Rg2.W)&0xFFFF; \
R->AF.B.l= \
(R->AF.B.l&~(H_FLAG|N_FLAG|C_FLAG))| \
((R->Rg1.W^R->Rg2.W^J.W)&0x1000? H_FLAG:0)| \
(((long)R->Rg1.W+(long)R->Rg2.W)&0x10000? C_FLAG:0); \
R->Rg1.W=J.W
#define M_ADCW(Rg) \
I=R->AF.B.l&C_FLAG;J.W=(R->HL.W+R->Rg.W+I)&0xFFFF; \
R->AF.B.l= \
(((long)R->HL.W+(long)R->Rg.W+(long)I)&0x10000? C_FLAG:0)| \
(~(R->HL.W^R->Rg.W)&(R->Rg.W^J.W)&0x8000? V_FLAG:0)| \
((R->HL.W^R->Rg.W^J.W)&0x1000? H_FLAG:0)| \
(J.W? 0:Z_FLAG)|(J.B.h&S_FLAG); \
R->HL.W=J.W
#define M_SBCW(Rg) \
I=R->AF.B.l&C_FLAG;J.W=(R->HL.W-R->Rg.W-I)&0xFFFF; \
R->AF.B.l= \
N_FLAG| \
(((long)R->HL.W-(long)R->Rg.W-(long)I)&0x10000? C_FLAG:0)| \
((R->HL.W^R->Rg.W)&(R->HL.W^J.W)&0x8000? V_FLAG:0)| \
((R->HL.W^R->Rg.W^J.W)&0x1000? H_FLAG:0)| \
(J.W? 0:Z_FLAG)|(J.B.h&S_FLAG); \
R->HL.W=J.W
enum Codes
{
NOP,LD_BC_WORD,LD_xBC_A,INC_BC,INC_B,DEC_B,LD_B_BYTE,RLCA,
EX_AF_AF,ADD_HL_BC,LD_A_xBC,DEC_BC,INC_C,DEC_C,LD_C_BYTE,RRCA,
DJNZ,LD_DE_WORD,LD_xDE_A,INC_DE,INC_D,DEC_D,LD_D_BYTE,RLA,
JR,ADD_HL_DE,LD_A_xDE,DEC_DE,INC_E,DEC_E,LD_E_BYTE,RRA,
JR_NZ,LD_HL_WORD,LD_xWORD_HL,INC_HL,INC_H,DEC_H,LD_H_BYTE,DAA,
JR_Z,ADD_HL_HL,LD_HL_xWORD,DEC_HL,INC_L,DEC_L,LD_L_BYTE,CPL,
JR_NC,LD_SP_WORD,LD_xWORD_A,INC_SP,INC_xHL,DEC_xHL,LD_xHL_BYTE,SCF,
JR_C,ADD_HL_SP,LD_A_xWORD,DEC_SP,INC_A,DEC_A,LD_A_BYTE,CCF,
LD_B_B,LD_B_C,LD_B_D,LD_B_E,LD_B_H,LD_B_L,LD_B_xHL,LD_B_A,
LD_C_B,LD_C_C,LD_C_D,LD_C_E,LD_C_H,LD_C_L,LD_C_xHL,LD_C_A,
LD_D_B,LD_D_C,LD_D_D,LD_D_E,LD_D_H,LD_D_L,LD_D_xHL,LD_D_A,
LD_E_B,LD_E_C,LD_E_D,LD_E_E,LD_E_H,LD_E_L,LD_E_xHL,LD_E_A,
LD_H_B,LD_H_C,LD_H_D,LD_H_E,LD_H_H,LD_H_L,LD_H_xHL,LD_H_A,
LD_L_B,LD_L_C,LD_L_D,LD_L_E,LD_L_H,LD_L_L,LD_L_xHL,LD_L_A,
LD_xHL_B,LD_xHL_C,LD_xHL_D,LD_xHL_E,LD_xHL_H,LD_xHL_L,HALT,LD_xHL_A,
LD_A_B,LD_A_C,LD_A_D,LD_A_E,LD_A_H,LD_A_L,LD_A_xHL,LD_A_A,
ADD_B,ADD_C,ADD_D,ADD_E,ADD_H,ADD_L,ADD_xHL,ADD_A,
ADC_B,ADC_C,ADC_D,ADC_E,ADC_H,ADC_L,ADC_xHL,ADC_A,
SUB_B,SUB_C,SUB_D,SUB_E,SUB_H,SUB_L,SUB_xHL,SUB_A,
SBC_B,SBC_C,SBC_D,SBC_E,SBC_H,SBC_L,SBC_xHL,SBC_A,
AND_B,AND_C,AND_D,AND_E,AND_H,AND_L,AND_xHL,AND_A,
XOR_B,XOR_C,XOR_D,XOR_E,XOR_H,XOR_L,XOR_xHL,XOR_A,
OR_B,OR_C,OR_D,OR_E,OR_H,OR_L,OR_xHL,OR_A,
CP_B,CP_C,CP_D,CP_E,CP_H,CP_L,CP_xHL,CP_A,
RET_NZ,POP_BC,JP_NZ,JP,CALL_NZ,PUSH_BC,ADD_BYTE,RST00,
RET_Z,RET,JP_Z,PFX_CB,CALL_Z,CALL,ADC_BYTE,RST08,
RET_NC,POP_DE,JP_NC,OUTA,CALL_NC,PUSH_DE,SUB_BYTE,RST10,
RET_C,EXX,JP_C,INA,CALL_C,PFX_DD,SBC_BYTE,RST18,
RET_PO,POP_HL,JP_PO,EX_HL_xSP,CALL_PO,PUSH_HL,AND_BYTE,RST20,
RET_PE,LD_PC_HL,JP_PE,EX_DE_HL,CALL_PE,PFX_ED,XOR_BYTE,RST28,
RET_P,POP_AF,JP_P,DI,CALL_P,PUSH_AF,OR_BYTE,RST30,
RET_M,LD_SP_HL,JP_M,EI,CALL_M,PFX_FD,CP_BYTE,RST38
};
enum CodesCB
{
RLC_B,RLC_C,RLC_D,RLC_E,RLC_H,RLC_L,RLC_xHL,RLC_A,
RRC_B,RRC_C,RRC_D,RRC_E,RRC_H,RRC_L,RRC_xHL,RRC_A,
RL_B,RL_C,RL_D,RL_E,RL_H,RL_L,RL_xHL,RL_A,
RR_B,RR_C,RR_D,RR_E,RR_H,RR_L,RR_xHL,RR_A,
SLA_B,SLA_C,SLA_D,SLA_E,SLA_H,SLA_L,SLA_xHL,SLA_A,
SRA_B,SRA_C,SRA_D,SRA_E,SRA_H,SRA_L,SRA_xHL,SRA_A,
SLL_B,SLL_C,SLL_D,SLL_E,SLL_H,SLL_L,SLL_xHL,SLL_A,
SRL_B,SRL_C,SRL_D,SRL_E,SRL_H,SRL_L,SRL_xHL,SRL_A,
BIT0_B,BIT0_C,BIT0_D,BIT0_E,BIT0_H,BIT0_L,BIT0_xHL,BIT0_A,
BIT1_B,BIT1_C,BIT1_D,BIT1_E,BIT1_H,BIT1_L,BIT1_xHL,BIT1_A,
BIT2_B,BIT2_C,BIT2_D,BIT2_E,BIT2_H,BIT2_L,BIT2_xHL,BIT2_A,
BIT3_B,BIT3_C,BIT3_D,BIT3_E,BIT3_H,BIT3_L,BIT3_xHL,BIT3_A,
BIT4_B,BIT4_C,BIT4_D,BIT4_E,BIT4_H,BIT4_L,BIT4_xHL,BIT4_A,
BIT5_B,BIT5_C,BIT5_D,BIT5_E,BIT5_H,BIT5_L,BIT5_xHL,BIT5_A,
BIT6_B,BIT6_C,BIT6_D,BIT6_E,BIT6_H,BIT6_L,BIT6_xHL,BIT6_A,
BIT7_B,BIT7_C,BIT7_D,BIT7_E,BIT7_H,BIT7_L,BIT7_xHL,BIT7_A,
RES0_B,RES0_C,RES0_D,RES0_E,RES0_H,RES0_L,RES0_xHL,RES0_A,
RES1_B,RES1_C,RES1_D,RES1_E,RES1_H,RES1_L,RES1_xHL,RES1_A,
RES2_B,RES2_C,RES2_D,RES2_E,RES2_H,RES2_L,RES2_xHL,RES2_A,
RES3_B,RES3_C,RES3_D,RES3_E,RES3_H,RES3_L,RES3_xHL,RES3_A,
RES4_B,RES4_C,RES4_D,RES4_E,RES4_H,RES4_L,RES4_xHL,RES4_A,
RES5_B,RES5_C,RES5_D,RES5_E,RES5_H,RES5_L,RES5_xHL,RES5_A,
RES6_B,RES6_C,RES6_D,RES6_E,RES6_H,RES6_L,RES6_xHL,RES6_A,
RES7_B,RES7_C,RES7_D,RES7_E,RES7_H,RES7_L,RES7_xHL,RES7_A,
SET0_B,SET0_C,SET0_D,SET0_E,SET0_H,SET0_L,SET0_xHL,SET0_A,
SET1_B,SET1_C,SET1_D,SET1_E,SET1_H,SET1_L,SET1_xHL,SET1_A,
SET2_B,SET2_C,SET2_D,SET2_E,SET2_H,SET2_L,SET2_xHL,SET2_A,
SET3_B,SET3_C,SET3_D,SET3_E,SET3_H,SET3_L,SET3_xHL,SET3_A,
SET4_B,SET4_C,SET4_D,SET4_E,SET4_H,SET4_L,SET4_xHL,SET4_A,
SET5_B,SET5_C,SET5_D,SET5_E,SET5_H,SET5_L,SET5_xHL,SET5_A,
SET6_B,SET6_C,SET6_D,SET6_E,SET6_H,SET6_L,SET6_xHL,SET6_A,
SET7_B,SET7_C,SET7_D,SET7_E,SET7_H,SET7_L,SET7_xHL,SET7_A
};
enum CodesED
{
DB_00,DB_01,DB_02,DB_03,DB_04,DB_05,DB_06,DB_07,
DB_08,DB_09,DB_0A,DB_0B,DB_0C,DB_0D,DB_0E,DB_0F,
DB_10,DB_11,DB_12,DB_13,DB_14,DB_15,DB_16,DB_17,
DB_18,DB_19,DB_1A,DB_1B,DB_1C,DB_1D,DB_1E,DB_1F,
DB_20,DB_21,DB_22,DB_23,DB_24,DB_25,DB_26,DB_27,
DB_28,DB_29,DB_2A,DB_2B,DB_2C,DB_2D,DB_2E,DB_2F,
DB_30,DB_31,DB_32,DB_33,DB_34,DB_35,DB_36,DB_37,
DB_38,DB_39,DB_3A,DB_3B,DB_3C,DB_3D,DB_3E,DB_3F,
IN_B_xC,OUT_xC_B,SBC_HL_BC,LD_xWORDe_BC,NEG,RETN,IM_0,LD_I_A,
IN_C_xC,OUT_xC_C,ADC_HL_BC,LD_BC_xWORDe,DB_4C,RETI,DB_,LD_R_A,
IN_D_xC,OUT_xC_D,SBC_HL_DE,LD_xWORDe_DE,DB_54,DB_55,IM_1,LD_A_I,
IN_E_xC,OUT_xC_E,ADC_HL_DE,LD_DE_xWORDe,DB_5C,DB_5D,IM_2,LD_A_R,
IN_H_xC,OUT_xC_H,SBC_HL_HL,LD_xWORDe_HL,DB_64,DB_65,DB_66,RRD,
IN_L_xC,OUT_xC_L,ADC_HL_HL,LD_HL_xWORDe,DB_6C,DB_6D,DB_6E,RLD,
IN_F_xC,DB_71,SBC_HL_SP,LD_xWORDe_SP,DB_74,DB_75,DB_76,DB_77,
IN_A_xC,OUT_xC_A,ADC_HL_SP,LD_SP_xWORDe,DB_7C,DB_7D,DB_7E,DB_7F,
DB_80,DB_81,DB_82,DB_83,DB_84,DB_85,DB_86,DB_87,
DB_88,DB_89,DB_8A,DB_8B,DB_8C,DB_8D,DB_8E,DB_8F,
DB_90,DB_91,DB_92,DB_93,DB_94,DB_95,DB_96,DB_97,
DB_98,DB_99,DB_9A,DB_9B,DB_9C,DB_9D,DB_9E,DB_9F,
LDI,CPI,INI,OUTI,DB_A4,DB_A5,DB_A6,DB_A7,
LDD,CPD,IND,OUTD,DB_AC,DB_AD,DB_AE,DB_AF,
LDIR,CPIR,INIR,OTIR,DB_B4,DB_B5,DB_B6,DB_B7,
LDDR,CPDR,INDR,OTDR,DB_BC,DB_BD,DB_BE,DB_BF,
DB_C0,DB_C1,DB_C2,DB_C3,DB_C4,DB_C5,DB_C6,DB_C7,
DB_C8,DB_C9,DB_CA,DB_CB,DB_CC,DB_CD,DB_CE,DB_CF,
DB_D0,DB_D1,DB_D2,DB_D3,DB_D4,DB_D5,DB_D6,DB_D7,
DB_D8,DB_D9,DB_DA,DB_DB,DB_DC,DB_DD,DB_DE,DB_DF,
DB_E0,DB_E1,DB_E2,DB_E3,DB_E4,DB_E5,DB_E6,DB_E7,
DB_E8,DB_E9,DB_EA,DB_EB,DB_EC,DB_ED,DB_EE,DB_EF,
DB_F0,DB_F1,DB_F2,DB_F3,DB_F4,DB_F5,DB_F6,DB_F7,
DB_F8,DB_F9,DB_FA,DB_FB,DB_FC,DB_FD,DB_FE,DB_FF
};
static void CodesCB(register Z80 *R)
{
register byte I;
I=RdZ80(R->PC.W++);
R->ICount-=CyclesCB[I];
switch(I)
{
#include "CodesCB.h"
default:
if(R->TrapBadOps)
printf
(
"[Z80 %lX] Unrecognized instruction: CB %02X at PC=%04X\n",
(long)(R->User),RdZ80(R->PC.W-1),R->PC.W-2
);
}
}
static void CodesDDCB(register Z80 *R)
{
register pair J;
register byte I;
#define XX IX
J.W=R->XX.W+(offset)RdZ80(R->PC.W++);
I=RdZ80(R->PC.W++);
R->ICount-=CyclesXXCB[I];
switch(I)
{
#include "CodesXCB.h"
default:
if(R->TrapBadOps)
printf
(
"[Z80 %lX] Unrecognized instruction: DD CB %02X %02X at PC=%04X\n",
(long)(R->User),RdZ80(R->PC.W-2),RdZ80(R->PC.W-1),R->PC.W-4
);
}
#undef XX
}
static void CodesFDCB(register Z80 *R)
{
register pair J;
register byte I;
#define XX IY
J.W=R->XX.W+(offset)RdZ80(R->PC.W++);
I=RdZ80(R->PC.W++);
R->ICount-=CyclesXXCB[I];
switch(I)
{
#include "CodesXCB.h"
default:
if(R->TrapBadOps)
printf
(
"[Z80 %lX] Unrecognized instruction: FD CB %02X %02X at PC=%04X\n",
(long)R->User,RdZ80(R->PC.W-2),RdZ80(R->PC.W-1),R->PC.W-4
);
}
#undef XX
}
static void CodesED(register Z80 *R)
{
register byte I;
register pair J;
I=RdZ80(R->PC.W++);
R->ICount-=CyclesED[I];
switch(I)
{
#include "CodesED.h"
case PFX_ED:
R->PC.W--;break;
default:
if(R->TrapBadOps)
printf
(
"[Z80 %lX] Unrecognized instruction: ED %02X at PC=%04X\n",
(long)R->User,RdZ80(R->PC.W-1),R->PC.W-2
);
}
}
static void CodesDD(register Z80 *R)
{
register byte I;
register pair J;
#define XX IX
I=RdZ80(R->PC.W++);
R->ICount-=CyclesXX[I];
switch(I)
{
#include "CodesXX.h"
case PFX_FD:
case PFX_DD:
R->PC.W--;break;
case PFX_CB:
CodesDDCB(R);break;
case HALT:
R->PC.W--;R->IFF|=0x80;R->ICount=0;break;
default:
if(R->TrapBadOps)
printf
(
"[Z80 %lX] Unrecognized instruction: DD %02X at PC=%04X\n",
(long)R->User,RdZ80(R->PC.W-1),R->PC.W-2
);
}
#undef XX
}
static void CodesFD(register Z80 *R)
{
register byte I;
register pair J;
#define XX IY
I=RdZ80(R->PC.W++);
R->ICount-=CyclesXX[I];
switch(I)
{
#include "CodesXX.h"
case PFX_FD:
case PFX_DD:
R->PC.W--;break;
case PFX_CB:
CodesFDCB(R);break;
case HALT:
R->PC.W--;R->IFF|=0x80;R->ICount=0;break;
default:
printf
(
"Unrecognized instruction: FD %02X at PC=%04X\n",
RdZ80(R->PC.W-1),R->PC.W-2
);
}
#undef XX
}
/** ResetZ80() ***********************************************/
/** This function can be used to reset the register struct **/
/** before starting execution with Z80(). It sets the **/
/** registers to their supposed initial values. **/
/*************************************************************/
void ResetZ80(Z80 *R)
{
R->PC.W=0x0000;R->SP.W=0xF000;
R->AF.W=R->BC.W=R->DE.W=R->HL.W=0x0000;
R->AF1.W=R->BC1.W=R->DE1.W=R->HL1.W=0x0000;
R->IX.W=R->IY.W=0x0000;
R->I=0x00;R->IFF=0x00;
R->ICount=R->IPeriod;
R->IRequest=INT_NONE;
}
/** ExecZ80() ************************************************/
/** This function will execute a single Z80 opcode. It will **/
/** then return next PC, and current register values in R. **/
/*************************************************************/
word ExecZ80(Z80 *R)
{
register byte I;
register pair J;
I=RdZ80(R->PC.W++);
R->ICount-=Cycles[I];
switch(I)
{
#include "Codes.h"
case PFX_CB: CodesCB(R);break;
case PFX_ED: CodesED(R);break;
case PFX_FD: CodesFD(R);break;
case PFX_DD: CodesDD(R);break;
}
/* We are done */
return(R->PC.W);
}
/** IntZ80() *************************************************/
/** This function will generate interrupt of given vector. **/
/*************************************************************/
void IntZ80(Z80 *R,word Vector)
{
if((R->IFF&0x01)||(Vector==INT_NMI))
{
/* Experimental V Shouldn't disable all interrupts? */
R->IFF=(R->IFF&0x9E)|((R->IFF&0x01)<<6);
if(R->IFF&0x80) { R->PC.W++;R->IFF&=0x7F; }
M_PUSH(PC);
/* Automatically reset IRequest if needed */
if(R->IAutoReset&&(Vector==R->IRequest)) R->IRequest=INT_NONE;
if(Vector==INT_NMI) R->PC.W=INT_NMI;
else
if(R->IFF&0x04)
{
Vector=(Vector&0xFF)|((word)(R->I)<<8);
R->PC.B.l=RdZ80(Vector++);
R->PC.B.h=RdZ80(Vector);
}
else
if(R->IFF&0x02) R->PC.W=INT_IRQ;
else R->PC.W=Vector;
}
}
/** RunZ80() *************************************************/
/** This function will run Z80 code until an LoopZ80() call **/
/** returns INT_QUIT. It will return the PC at which **/
/** emulation stopped, and current register values in R. **/
/*************************************************************/
static byte I;
static pair J;
word RunZ80(Z80 *R)
{
// register byte I;
// register pair J;
int ras=0;
for(;;)
{
//#ifdef DEBUG
// /* Turn tracing on when reached trap address */
// if(R->PC.W==R->Trap) R->Trace=1;
// /* Call single-step debugger, exit if requested */
// if(R->Trace)
// if(!DebugZ80(R)) return(R->PC.W);
//#endif
I=RdZ80(R->PC.W++);
R->ICount-=Cycles[I];
switch(I)
{
#include "Codes.h"
case PFX_CB: CodesCB(R);break;
case PFX_ED: CodesED(R);break;
case PFX_FD: CodesFD(R);break;
case PFX_DD: CodesDD(R);break;
}
/* If cycle counter expired... */
if(R->ICount<=0)
{
/* If we have come after EI, get address from IRequest */
/* Otherwise, get it from the loop handler */
if(R->IFF&0x20)
{
J.W=R->IRequest; /* Get pending interrupt */
R->ICount+=R->IBackup-1; /* Restore the ICount */
R->IFF&=0xDF; /* Done with AfterEI state */
}
else
{
J.W=LoopZ80(R, &ras); /* Call periodic handler */
R->ICount=R->IPeriod; /* Reset the cycle counter */
if(J.W==INT_NONE) I=R->IRequest; /* Pending int-rupt */
}
if(J.W==INT_QUIT) return(R->PC.W); /* Exit if INT_QUIT */
if(J.W!=INT_NONE) IntZ80(R,J.W); /* Int-pt if needed */
}
if (ras == 1) break;
}
/* Execution stopped */
return(R->PC.W);
}