MCUME/MCUME_teensy41/teensysnes/memory.h

540 wiersze
12 KiB
C

/*****************************************************************************\
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
This file is licensed under the Snes9x License.
For further information, consult the LICENSE file in the root directory.
\*****************************************************************************/
#ifndef _MEMORY_H_
#define _MEMORY_H_
#define MEMMAP_BLOCK_SIZE (0x1000)
#define MEMMAP_NUM_BLOCKS (0x1000000 / MEMMAP_BLOCK_SIZE)
#define MEMMAP_SHIFT (12)
#define MEMMAP_MASK (MEMMAP_BLOCK_SIZE - 1)
enum
{
MAP_TYPE_I_O,
MAP_TYPE_ROM,
MAP_TYPE_RAM
};
enum
{
MAP_CPU,
MAP_PPU,
MAP_LOROM_SRAM,
MAP_HIROM_SRAM,
MAP_DSP,
MAP_RONLY_SRAM,
MAP_NONE,
MAP_LAST
};
typedef enum
{
WRAP_NONE,
WRAP_BANK,
WRAP_PAGE
} s9xwrap_t;
typedef enum
{
WRITE_01,
WRITE_10
} s9xwriteorder_t;
typedef struct
{
uint8 CPU_IO[0x400];
uint8 PPU_IO[0x200];
uint8 *RAM;
uint8 *ROM;
uint8 *SRAM;
uint8 *VRAM;
#if RETRO_COMBINED_MEMORY_MAP
union {
uint8 *ReadMap[MEMMAP_NUM_BLOCKS];
uint8 *WriteMap[MEMMAP_NUM_BLOCKS];
};
#else
uint8 *ReadMap[MEMMAP_NUM_BLOCKS];
uint8 *WriteMap[MEMMAP_NUM_BLOCKS];
#endif
char ROMName[ROM_NAME_LEN];
char ROMId[5];
uint8 ROMRegion;
uint8 ROMSpeed;
uint8 ROMType;
uint8 ROMSize;
uint32 ROMChecksum;
uint32 ROMComplementChecksum;
uint32 ROMCRC32;
bool8 ROMIsPatched;
bool8 HiROM;
bool8 LoROM;
uint32 SRAMSize;
uint32 SRAMBytes;
uint32 SRAMMask;
uint32 CalculatedSize;
uint32 CalculatedChecksum;
// uint32 ROM_BLOCKS[ROM_MAX_SIZE / ROM_BLOCK_SIZE];
uint32 ROM_MAX_SIZE;
uint32 ROM_SIZE;
} CMemory;
extern CMemory Memory;
extern uint32 OpenBus;
bool8 S9xLoadROMMem (const uint8 *);
bool8 S9xLoadROM (const char *);
bool8 S9xMemoryInit (void);
void S9xMemoryDeinit (void);
#include "cpu.h"
#include "dsp.h"
#if RETRO_LESS_ACCURATE_MEM
#define addCyclesInMemoryAccess \
if (!CPU.InDMAorHDMA) \
{ \
CPU.Cycles += speed; \
}
#define addCyclesInMemoryAccess_x2 \
if (!CPU.InDMAorHDMA) \
{ \
CPU.Cycles += speed << 1; \
}
#else
#define addCyclesInMemoryAccess \
if (!CPU.InDMAorHDMA) \
{ \
CPU.Cycles += speed; \
if (CPU.Cycles >= CPU.NextEvent) \
S9xDoHEventProcessing(); \
}
#define addCyclesInMemoryAccess_x2 \
if (!CPU.InDMAorHDMA) \
{ \
CPU.Cycles += speed << 1; \
if (CPU.Cycles >= CPU.NextEvent) \
S9xDoHEventProcessing(); \
}
#endif
// This is just to track where ROM memory access occurs. If the trapping isn't too costly, this info
// will eventually be used it to handle large roms through esp_himem_*
#define CHECK_ROM_MAPPING(a) // if ((a) >= Memory.ROM && (a) - Memory.ROM < Memory.ROM_MAX_SIZE) { printf("ROM in %s at %p\n", __func__, (a)); }
static inline int32 memory_speed (uint32 address)
{
if (address & 0x408000)
{
if (address & 0x800000)
return (CPU.FastROMSpeed);
return (SLOW_ONE_CYCLE);
}
if ((address + 0x6000) & 0x4000)
return (SLOW_ONE_CYCLE);
if ((address - 0x4000) & 0x7e00)
return (ONE_CYCLE);
return (TWO_CYCLES);
}
inline uint8 S9xGetByte (uint32 Address)
{
uint8 *GetAddress = Memory.ReadMap[(Address & 0xffffff) >> MEMMAP_SHIFT];
uint32 speed = memory_speed(Address);
uint32 byte;
if (GetAddress >= (uint8 *) MAP_LAST)
{
CHECK_ROM_MAPPING(GetAddress + (Address & 0xffff));
byte = *(GetAddress + (Address & 0xffff));
addCyclesInMemoryAccess;
return (byte);
}
switch ((pint) GetAddress)
{
case MAP_CPU:
byte = S9xGetCPU(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case MAP_PPU:
if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100)
return (OpenBus);
byte = S9xGetPPU(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case MAP_LOROM_SRAM:
// Address & 0x7fff : offset into bank
// Address & 0xff0000 : bank
// bank >> 1 | offset : SRAM address, unbound
// unbound & SRAMMask : SRAM offset
byte = *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask));
addCyclesInMemoryAccess;
return (byte);
case MAP_HIROM_SRAM:
case MAP_RONLY_SRAM:
byte = *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask));
addCyclesInMemoryAccess;
return (byte);
case MAP_DSP:
byte = S9xGetDSP(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case MAP_NONE:
default:
byte = OpenBus;
addCyclesInMemoryAccess;
return (byte);
}
}
inline uint16 S9xGetWord (uint32 Address, s9xwrap_t w = WRAP_NONE)
{
uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff));
uint32 word;
if ((Address & mask) == mask)
{
PC_t a;
word = OpenBus = S9xGetByte(Address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = Address;
a.B.xPCl++;
return (word | (S9xGetByte(a.xPBPC) << 8));
case WRAP_BANK:
a.xPBPC = Address;
a.W.xPC++;
return (word | (S9xGetByte(a.xPBPC) << 8));
case WRAP_NONE:
default:
return (word | (S9xGetByte(Address + 1) << 8));
}
}
uint8 *GetAddress = Memory.ReadMap[(Address & 0xffffff) >> MEMMAP_SHIFT];
uint32 speed = memory_speed(Address);
if (GetAddress >= (uint8 *) MAP_LAST)
{
CHECK_ROM_MAPPING(GetAddress + (Address & 0xffff));
word = READ_WORD(GetAddress + (Address & 0xffff));
addCyclesInMemoryAccess_x2;
return (word);
}
switch ((pint) GetAddress)
{
case MAP_CPU:
word = S9xGetCPU(Address & 0xffff);
word |= S9xGetCPU((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess_x2;
return (word);
case MAP_PPU:
if (CPU.InDMAorHDMA)
{
word = OpenBus = S9xGetByte(Address);
return (word | (S9xGetByte(Address + 1) << 8));
}
word = S9xGetPPU(Address & 0xffff);
word |= S9xGetPPU((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess_x2;
return (word);
case MAP_LOROM_SRAM:
if (Memory.SRAMMask >= MEMMAP_MASK)
word = READ_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask));
else
word = (*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask))) |
((*(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask))) << 8);
addCyclesInMemoryAccess_x2;
return (word);
case MAP_HIROM_SRAM:
case MAP_RONLY_SRAM:
if (Memory.SRAMMask >= MEMMAP_MASK)
word = READ_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask));
else
word = (*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) |
(*(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3)) & Memory.SRAMMask)) << 8));
addCyclesInMemoryAccess_x2;
return (word);
case MAP_DSP:
word = S9xGetDSP(Address & 0xffff);
word |= S9xGetDSP((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess_x2;
return (word);
case MAP_NONE:
default:
word = OpenBus | (OpenBus << 8);
addCyclesInMemoryAccess_x2;
return (word);
}
}
inline void S9xSetByte (uint8 Byte, uint32 Address)
{
uint8 *SetAddress = Memory.WriteMap[(Address & 0xffffff) >> MEMMAP_SHIFT];
uint32 speed = memory_speed(Address);
if (SetAddress >= (uint8 *) MAP_LAST)
{
*(SetAddress + (Address & 0xffff)) = Byte;
addCyclesInMemoryAccess;
return;
}
switch ((pint) SetAddress)
{
case MAP_CPU:
S9xSetCPU(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case MAP_PPU:
if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100)
return;
S9xSetPPU(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case MAP_LOROM_SRAM:
if (Memory.SRAMMask)
{
*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = Byte;
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess;
return;
case MAP_HIROM_SRAM:
if (Memory.SRAMMask)
{
*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) = Byte;
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess;
return;
case MAP_DSP:
S9xSetDSP(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case MAP_NONE:
default:
addCyclesInMemoryAccess;
return;
}
}
inline void S9xSetWord (uint16 Word, uint32 Address, s9xwrap_t w, s9xwriteorder_t o)
{
uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff));
if ((Address & mask) == mask)
{
PC_t a;
if (!o)
S9xSetByte((uint8) Word, Address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = Address;
a.B.xPCl++;
S9xSetByte(Word >> 8, a.xPBPC);
break;
case WRAP_BANK:
a.xPBPC = Address;
a.W.xPC++;
S9xSetByte(Word >> 8, a.xPBPC);
break;
case WRAP_NONE:
default:
S9xSetByte(Word >> 8, Address + 1);
break;
}
if (o)
S9xSetByte((uint8) Word, Address);
return;
}
uint8 *SetAddress = Memory.WriteMap[(Address & 0xffffff) >> MEMMAP_SHIFT];
uint32 speed = memory_speed(Address);
if (SetAddress >= (uint8 *) MAP_LAST)
{
WRITE_WORD(SetAddress + (Address & 0xffff), Word);
addCyclesInMemoryAccess_x2;
return;
}
switch ((pint) SetAddress)
{
case MAP_CPU:
if (o)
{
S9xSetCPU(Word >> 8, (Address + 1) & 0xffff);
S9xSetCPU((uint8) Word, Address & 0xffff);
}
else
{
S9xSetCPU((uint8) Word, Address & 0xffff);
S9xSetCPU(Word >> 8, (Address + 1) & 0xffff);
}
addCyclesInMemoryAccess_x2;
return;
case MAP_PPU:
if (CPU.InDMAorHDMA)
{
if ((Address & 0xff00) != 0x2100)
S9xSetPPU((uint8) Word, Address & 0xffff);
if (((Address + 1) & 0xff00) != 0x2100)
S9xSetPPU(Word >> 8, (Address + 1) & 0xffff);
return;
}
if (o)
{
S9xSetPPU(Word >> 8, (Address + 1) & 0xffff);
S9xSetPPU((uint8) Word, Address & 0xffff);
}
else
{
S9xSetPPU((uint8) Word, Address & 0xffff);
S9xSetPPU(Word >> 8, (Address + 1) & 0xffff);
}
addCyclesInMemoryAccess_x2;
return;
case MAP_LOROM_SRAM:
if (Memory.SRAMMask)
{
if (Memory.SRAMMask >= MEMMAP_MASK)
WRITE_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask), Word);
else
{
*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = (uint8) Word;
*(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask)) = Word >> 8;
}
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess_x2;
return;
case MAP_HIROM_SRAM:
if (Memory.SRAMMask)
{
if (Memory.SRAMMask >= MEMMAP_MASK)
WRITE_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask), Word);
else
{
*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) = (uint8) Word;
*(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3)) & Memory.SRAMMask)) = Word >> 8;
}
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess_x2;
return;
case MAP_DSP:
if (o)
{
S9xSetDSP(Word >> 8, (Address + 1) & 0xffff);
S9xSetDSP((uint8) Word, Address & 0xffff);
}
else
{
S9xSetDSP((uint8) Word, Address & 0xffff);
S9xSetDSP(Word >> 8, (Address + 1) & 0xffff);
}
addCyclesInMemoryAccess_x2;
return;
case MAP_NONE:
default:
addCyclesInMemoryAccess_x2;
return;
}
}
inline uint8 * S9xGetBasePointer (uint32 Address)
{
uint8 *GetAddress = Memory.ReadMap[(Address & 0xffffff) >> MEMMAP_SHIFT];
if ((pint) GetAddress >= MAP_LAST)
{
CHECK_ROM_MAPPING(GetAddress);
return (GetAddress);
}
else if ((pint) GetAddress == MAP_LOROM_SRAM)
{
if ((Memory.SRAMMask & MEMMAP_MASK) == MEMMAP_MASK)
return (Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask) - (Address & 0xffff));
}
else if ((pint) GetAddress == MAP_HIROM_SRAM)
{
if ((Memory.SRAMMask & MEMMAP_MASK) == MEMMAP_MASK)
return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask) - (Address & 0xffff));
}
return (NULL);
}
inline void S9xSetPCBase (uint32 Address)
{
Registers.PBPC = Address & 0xffffff;
ICPU.ShiftedPB = Address & 0xff0000;
CPU.MemSpeed = memory_speed(Address);
CPU.MemSpeedx2 = CPU.MemSpeed << 1;
CPU.PCBase = S9xGetBasePointer(Address);
}
#endif