MCUME/MCUME_esp32/espvectrex/main/e8910.c

538 wiersze
14 KiB
C
Executable File

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
//#include "SDL.h"
#define SOUND_FREQ 22050
#define SOUND_SAMPLE 1024
/***************************************************************************
ay8910.c
Emulation of the AY-3-8910 / YM2149 sound chip.
Based on various code snippets by Ville Hallik, Michael Cuddy,
Tatsuyuki Satoh, Fabrice Frances, Nicola Salmoria.
***************************************************************************/
#define MAX_OUTPUT 0x0fff
//#define MAX_OUTPUT 0x7f
#define STEP3 1
#define STEP2 length
#define STEP 2
typedef int INT32;
typedef unsigned int UINT32;
typedef char INT8;
typedef unsigned char UINT8;
struct AY8910 {
int index;
int ready;
unsigned *Regs;
INT32 lastEnable;
INT32 PeriodA,PeriodB,PeriodC,PeriodN,PeriodE;
INT32 CountA,CountB,CountC,CountN,CountE;
UINT32 VolA,VolB,VolC,VolE;
UINT8 EnvelopeA,EnvelopeB,EnvelopeC;
UINT8 OutputA,OutputB,OutputC,OutputN;
INT8 CountEnv;
UINT8 Hold,Alternate,Attack,Holding;
INT32 RNG;
unsigned int VolTable[32];
} PSG;
/* register id's */
#define AY_AFINE (0)
#define AY_ACOARSE (1)
#define AY_BFINE (2)
#define AY_BCOARSE (3)
#define AY_CFINE (4)
#define AY_CCOARSE (5)
#define AY_NOISEPER (6)
#define AY_ENABLE (7)
#define AY_AVOL (8)
#define AY_BVOL (9)
#define AY_CVOL (10)
#define AY_EFINE (11)
#define AY_ECOARSE (12)
#define AY_ESHAPE (13)
#define AY_PORTA (14)
#define AY_PORTB (15)
void e8910_write(int r, int v)
{
int old;
if (PSG.Regs == NULL) return;
PSG.Regs[r] = v;
/* A note about the period of tones, noise and envelope: for speed reasons,*/
/* we count down from the period to 0, but careful studies of the chip */
/* output prove that it instead counts up from 0 until the counter becomes */
/* greater or equal to the period. This is an important difference when the*/
/* program is rapidly changing the period to modulate the sound. */
/* To compensate for the difference, when the period is changed we adjust */
/* our internal counter. */
/* Also, note that period = 0 is the same as period = 1. This is mentioned */
/* in the YM2203 data sheets. However, this does NOT apply to the Envelope */
/* period. In that case, period = 0 is half as period = 1. */
switch( r )
{
case AY_AFINE:
case AY_ACOARSE:
PSG.Regs[AY_ACOARSE] &= 0x0f;
old = PSG.PeriodA;
PSG.PeriodA = (PSG.Regs[AY_AFINE] + 256 * PSG.Regs[AY_ACOARSE]) * STEP3;
if (PSG.PeriodA == 0) PSG.PeriodA = STEP3;
PSG.CountA += PSG.PeriodA - old;
if (PSG.CountA <= 0) PSG.CountA = 1;
break;
case AY_BFINE:
case AY_BCOARSE:
PSG.Regs[AY_BCOARSE] &= 0x0f;
old = PSG.PeriodB;
PSG.PeriodB = (PSG.Regs[AY_BFINE] + 256 * PSG.Regs[AY_BCOARSE]) * STEP3;
if (PSG.PeriodB == 0) PSG.PeriodB = STEP3;
PSG.CountB += PSG.PeriodB - old;
if (PSG.CountB <= 0) PSG.CountB = 1;
break;
case AY_CFINE:
case AY_CCOARSE:
PSG.Regs[AY_CCOARSE] &= 0x0f;
old = PSG.PeriodC;
PSG.PeriodC = (PSG.Regs[AY_CFINE] + 256 * PSG.Regs[AY_CCOARSE]) * STEP3;
if (PSG.PeriodC == 0) PSG.PeriodC = STEP3;
PSG.CountC += PSG.PeriodC - old;
if (PSG.CountC <= 0) PSG.CountC = 1;
break;
case AY_NOISEPER:
PSG.Regs[AY_NOISEPER] &= 0x1f;
old = PSG.PeriodN;
PSG.PeriodN = PSG.Regs[AY_NOISEPER] * STEP3;
if (PSG.PeriodN == 0) PSG.PeriodN = STEP3;
PSG.CountN += PSG.PeriodN - old;
if (PSG.CountN <= 0) PSG.CountN = 1;
break;
case AY_ENABLE:
PSG.lastEnable = PSG.Regs[AY_ENABLE];
break;
case AY_AVOL:
PSG.Regs[AY_AVOL] &= 0x1f;
PSG.EnvelopeA = PSG.Regs[AY_AVOL] & 0x10;
PSG.VolA = PSG.EnvelopeA ? PSG.VolE : PSG.VolTable[PSG.Regs[AY_AVOL] ? PSG.Regs[AY_AVOL]*2+1 : 0];
break;
case AY_BVOL:
PSG.Regs[AY_BVOL] &= 0x1f;
PSG.EnvelopeB = PSG.Regs[AY_BVOL] & 0x10;
PSG.VolB = PSG.EnvelopeB ? PSG.VolE : PSG.VolTable[PSG.Regs[AY_BVOL] ? PSG.Regs[AY_BVOL]*2+1 : 0];
break;
case AY_CVOL:
PSG.Regs[AY_CVOL] &= 0x1f;
PSG.EnvelopeC = PSG.Regs[AY_CVOL] & 0x10;
PSG.VolC = PSG.EnvelopeC ? PSG.VolE : PSG.VolTable[PSG.Regs[AY_CVOL] ? PSG.Regs[AY_CVOL]*2+1 : 0];
break;
case AY_EFINE:
case AY_ECOARSE:
old = PSG.PeriodE;
PSG.PeriodE = ((PSG.Regs[AY_EFINE] + 256 * PSG.Regs[AY_ECOARSE])) * STEP3;
//if (PSG.PeriodE == 0) PSG.PeriodE = STEP3 / 2;
if (PSG.PeriodE == 0) PSG.PeriodE = STEP3;
PSG.CountE += PSG.PeriodE - old;
if (PSG.CountE <= 0) PSG.CountE = 1;
break;
case AY_ESHAPE:
/* envelope shapes:
C AtAlH
0 0 x x \___
0 1 x x /___
1 0 0 0 \\\\
1 0 0 1 \___
1 0 1 0 \/\/
___
1 0 1 1 \
1 1 0 0 ////
___
1 1 0 1 /
1 1 1 0 /\/\
1 1 1 1 /___
The envelope counter on the AY-3-8910 has 16 steps. On the YM2149 it
has twice the steps, happening twice as fast. Since the end result is
just a smoother curve, we always use the YM2149 behaviour.
*/
PSG.Regs[AY_ESHAPE] &= 0x0f;
PSG.Attack = (PSG.Regs[AY_ESHAPE] & 0x04) ? 0x1f : 0x00;
if ((PSG.Regs[AY_ESHAPE] & 0x08) == 0)
{
/* if Continue = 0, map the shape to the equivalent one which has Continue = 1 */
PSG.Hold = 1;
PSG.Alternate = PSG.Attack;
}
else
{
PSG.Hold = PSG.Regs[AY_ESHAPE] & 0x01;
PSG.Alternate = PSG.Regs[AY_ESHAPE] & 0x02;
}
PSG.CountE = PSG.PeriodE;
PSG.CountEnv = 0x1f;
PSG.Holding = 0;
PSG.VolE = PSG.VolTable[PSG.CountEnv ^ PSG.Attack];
if (PSG.EnvelopeA) PSG.VolA = PSG.VolE;
if (PSG.EnvelopeB) PSG.VolB = PSG.VolE;
if (PSG.EnvelopeC) PSG.VolC = PSG.VolE;
break;
case AY_PORTA:
break;
case AY_PORTB:
break;
}
}
static void
e8910_callback(void *userdata, UINT8 *stream, int length)
{
(void) userdata;
int outn;
UINT8* buf1 = stream;
/* hack to prevent us from hanging when starting filtered outputs */
if (!PSG.ready)
{
memset(stream, 0, length * sizeof(*stream));
return;
}
length = length * 2;
/* The 8910 has three outputs, each output is the mix of one of the three */
/* tone generators and of the (single) noise generator. The two are mixed */
/* BEFORE going into the DAC. The formula to mix each channel is: */
/* (ToneOn | ToneDisable) & (NoiseOn | NoiseDisable). */
/* Note that this means that if both tone and noise are disabled, the output */
/* is 1, not 0, and can be modulated changing the volume. */
/* If the channels are disabled, set their output to 1, and increase the */
/* counter, if necessary, so they will not be inverted during this update. */
/* Setting the output to 1 is necessary because a disabled channel is locked */
/* into the ON state (see above); and it has no effect if the volume is 0. */
/* If the volume is 0, increase the counter, but don't touch the output. */
if (PSG.Regs[AY_ENABLE] & 0x01)
{
if (PSG.CountA <= STEP2) PSG.CountA += STEP2;
PSG.OutputA = 1;
}
else if (PSG.Regs[AY_AVOL] == 0)
{
/* note that I do count += length, NOT count = length + 1. You might think */
/* it's the same since the volume is 0, but doing the latter could cause */
/* interferencies when the program is rapidly modulating the volume. */
if (PSG.CountA <= STEP2) PSG.CountA += STEP2;
}
if (PSG.Regs[AY_ENABLE] & 0x02)
{
if (PSG.CountB <= STEP2) PSG.CountB += STEP2;
PSG.OutputB = 1;
}
else if (PSG.Regs[AY_BVOL] == 0)
{
if (PSG.CountB <= STEP2) PSG.CountB += STEP2;
}
if (PSG.Regs[AY_ENABLE] & 0x04)
{
if (PSG.CountC <= STEP2) PSG.CountC += STEP2;
PSG.OutputC = 1;
}
else if (PSG.Regs[AY_CVOL] == 0)
{
if (PSG.CountC <= STEP2) PSG.CountC += STEP2;
}
/* for the noise channel we must not touch OutputN - it's also not necessary */
/* since we use outn. */
if ((PSG.Regs[AY_ENABLE] & 0x38) == 0x38) /* all off */
if (PSG.CountN <= STEP2) PSG.CountN += STEP2;
outn = (PSG.OutputN | PSG.Regs[AY_ENABLE]);
/* buffering loop */
while (length > 0)
{
unsigned vol;
int left = 2;
/* vola, volb and volc keep track of how long each square wave stays */
/* in the 1 position during the sample period. */
int vola,volb,volc;
vola = volb = volc = 0;
do
{
int nextevent;
if (PSG.CountN < left) nextevent = PSG.CountN;
else nextevent = left;
if (outn & 0x08)
{
if (PSG.OutputA) vola += PSG.CountA;
PSG.CountA -= nextevent;
/* PeriodA is the half period of the square wave. Here, in each */
/* loop I add PeriodA twice, so that at the end of the loop the */
/* square wave is in the same status (0 or 1) it was at the start. */
/* vola is also incremented by PeriodA, since the wave has been 1 */
/* exactly half of the time, regardless of the initial position. */
/* If we exit the loop in the middle, OutputA has to be inverted */
/* and vola incremented only if the exit status of the square */
/* wave is 1. */
while (PSG.CountA <= 0)
{
PSG.CountA += PSG.PeriodA;
if (PSG.CountA > 0)
{
PSG.OutputA ^= 1;
if (PSG.OutputA) vola += PSG.PeriodA;
break;
}
PSG.CountA += PSG.PeriodA;
vola += PSG.PeriodA;
}
if (PSG.OutputA) vola -= PSG.CountA;
}
else
{
PSG.CountA -= nextevent;
while (PSG.CountA <= 0)
{
PSG.CountA += PSG.PeriodA;
if (PSG.CountA > 0)
{
PSG.OutputA ^= 1;
break;
}
PSG.CountA += PSG.PeriodA;
}
}
if (outn & 0x10)
{
if (PSG.OutputB) volb += PSG.CountB;
PSG.CountB -= nextevent;
while (PSG.CountB <= 0)
{
PSG.CountB += PSG.PeriodB;
if (PSG.CountB > 0)
{
PSG.OutputB ^= 1;
if (PSG.OutputB) volb += PSG.PeriodB;
break;
}
PSG.CountB += PSG.PeriodB;
volb += PSG.PeriodB;
}
if (PSG.OutputB) volb -= PSG.CountB;
}
else
{
PSG.CountB -= nextevent;
while (PSG.CountB <= 0)
{
PSG.CountB += PSG.PeriodB;
if (PSG.CountB > 0)
{
PSG.OutputB ^= 1;
break;
}
PSG.CountB += PSG.PeriodB;
}
}
if (outn & 0x20)
{
if (PSG.OutputC) volc += PSG.CountC;
PSG.CountC -= nextevent;
while (PSG.CountC <= 0)
{
PSG.CountC += PSG.PeriodC;
if (PSG.CountC > 0)
{
PSG.OutputC ^= 1;
if (PSG.OutputC) volc += PSG.PeriodC;
break;
}
PSG.CountC += PSG.PeriodC;
volc += PSG.PeriodC;
}
if (PSG.OutputC) volc -= PSG.CountC;
}
else
{
PSG.CountC -= nextevent;
while (PSG.CountC <= 0)
{
PSG.CountC += PSG.PeriodC;
if (PSG.CountC > 0)
{
PSG.OutputC ^= 1;
break;
}
PSG.CountC += PSG.PeriodC;
}
}
PSG.CountN -= nextevent;
if (PSG.CountN <= 0)
{
/* Is noise output going to change? */
if ((PSG.RNG + 1) & 2) /* (bit0^bit1)? */
{
PSG.OutputN = ~PSG.OutputN;
outn = (PSG.OutputN | PSG.Regs[AY_ENABLE]);
}
/* The Random Number Generator of the 8910 is a 17-bit shift */
/* register. The input to the shift register is bit0 XOR bit3 */
/* (bit0 is the output). This was verified on AY-3-8910 and YM2149 chips. */
/* The following is a fast way to compute bit17 = bit0^bit3. */
/* Instead of doing all the logic operations, we only check */
/* bit0, relying on the fact that after three shifts of the */
/* register, what now is bit3 will become bit0, and will */
/* invert, if necessary, bit14, which previously was bit17. */
if (PSG.RNG & 1) PSG.RNG ^= 0x24000; /* This version is called the "Galois configuration". */
PSG.RNG >>= 1;
PSG.CountN += PSG.PeriodN;
}
left -= nextevent;
} while (left > 0);
/* update envelope */
if (PSG.Holding == 0)
{
PSG.CountE -= STEP;
if (PSG.CountE <= 0)
{
do
{
PSG.CountEnv--;
PSG.CountE += PSG.PeriodE;
} while (PSG.CountE <= 0);
/* check envelope current position */
if (PSG.CountEnv < 0)
{
if (PSG.Hold)
{
if (PSG.Alternate)
PSG.Attack ^= 0x1f;
PSG.Holding = 1;
PSG.CountEnv = 0;
}
else
{
/* if CountEnv has looped an odd number of times (usually 1), */
/* invert the output. */
if (PSG.Alternate && (PSG.CountEnv & 0x20))
PSG.Attack ^= 0x1f;
PSG.CountEnv &= 0x1f;
}
}
PSG.VolE = PSG.VolTable[PSG.CountEnv ^ PSG.Attack];
/* reload volume */
if (PSG.EnvelopeA) PSG.VolA = PSG.VolE;
if (PSG.EnvelopeB) PSG.VolB = PSG.VolE;
if (PSG.EnvelopeC) PSG.VolC = PSG.VolE;
}
}
vol = (vola * PSG.VolA + volb * PSG.VolB + volc * PSG.VolC) / (3 * STEP);
if (--length & 1) *(buf1++) = vol >> 8;
}
}
static void
e8910_build_mixer_table()
{
int i;
double out;
/* calculate the volume->voltage conversion table */
/* The AY-3-8910 has 16 levels, in a logarithmic scale (3dB per STEP) */
/* The YM2149 still has 16 levels for the tone generators, but 32 for */
/* the envelope generator (1.5dB per STEP). */
out = MAX_OUTPUT;
for (i = 31;i > 0;i--)
{
PSG.VolTable[i] = (unsigned)(out + 0.5); /* round to nearest */
out /= 1.188502227; /* = 10 ^ (1.5/20) = 1.5dB */
}
PSG.VolTable[0] = 0;
}
extern unsigned snd_regs[16];
void
e8910_init_sound()
{
// SDL audio stuff
//SDL_AudioSpec reqSpec;
//SDL_AudioSpec givenSpec;
PSG.Regs = snd_regs;
PSG.RNG = 1;
PSG.OutputA = 0;
PSG.OutputB = 0;
PSG.OutputC = 0;
PSG.OutputN = 0xff;
e8910_build_mixer_table();
PSG.ready = 1;
// set up audio buffering
//reqSpec.freq = SOUND_FREQ; // Audio frequency in samples per second
//reqSpec.format = AUDIO_U8; // Audio data format
//reqSpec.channels = 1; // Number of channels: 1 mono, 2 stereo
//reqSpec.samples = SOUND_SAMPLE; // Audio buffer size in samples
//reqSpec.callback = e8910_callback; // Callback function for filling the audio buffer
//reqSpec.userdata = NULL;
/* Open the audio device */
//if ( SDL_OpenAudio(&reqSpec, &givenSpec) < 0 ){
// fprintf(stderr, "Couldn't open audio: %s\n", SDL_GetError());
// exit(-1);
//}
# if 0
fprintf(stdout, "samples:%d format=%x freq=%d\n", givenSpec.samples, givenSpec.format, givenSpec.freq);
# endif
// Start playing audio
//SDL_PauseAudio(0);
}
void
e8910_done_sound()
{
//SDL_CloseAudio();
}