M17_Implementations/SP5WWP/m17-packet/viterbi.c

214 wiersze
4.8 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "viterbi.h"
#define K 5 //constraint length
#define NUM_STATES (1 << (K - 1)) //number of states
//vars
uint32_t prevMetrics[NUM_STATES];
uint32_t currMetrics[NUM_STATES];
uint32_t prevMetricsData[NUM_STATES];
uint32_t currMetricsData[NUM_STATES];
uint16_t history[244];
/**
* Decode unpunctured convolutionally encoded data.
*
* @param out: destination array where decoded data is written.
* @param in: input data.
* @param len: input length in bits
* @return number of bit errors corrected.
*/
uint32_t decode(uint8_t* out, const uint16_t* in, uint16_t len)
{
if(len > 244*2)
fprintf(stderr, "Input size exceeds max history\n");
reset();
size_t pos = 0;
for(size_t i = 0; i < len; i += 2)
{
uint16_t s0 = in[i];
uint16_t s1 = in[i + 1];
decodeBit(s0, s1, pos);
pos++;
}
return chainback(out, pos, len/2);
}
/**
* Decode punctured convolutionally encoded data.
*
* @param out: destination array where decoded data is written.
* @param in: input data.
* @param punct: puncturing matrix.
* @param in_len: input data length.
* @param p_len: puncturing matrix length (entries).
* @return number of bit errors corrected.
*/
uint32_t decodePunctured(uint8_t* out, const uint16_t* in, const uint8_t* punct, const uint16_t in_len, const uint16_t p_len)
{
if(in_len > 244*2)
fprintf(stderr, "Input size exceeds max history\n");
uint16_t umsg[244*2]; //unpunctured message
uint8_t p=0; //puncturer matrix entry
uint16_t u=0; //bits count - unpunctured message
uint16_t i=0; //bits read from the input message
while(i<in_len)
{
if(punct[p])
{
umsg[u]=in[i];
i++;
}
else
{
umsg[u]=0x7FFF;
}
u++;
p++;
p%=p_len;
}
return decode(out, umsg, u) - (u-in_len)*0x7FFF;
}
/**
* Decode one bit and update trellis.
*
* @param s0: cost of the first symbol.
* @param s1: cost of the second symbol.
* @param pos: bit position in history.
*/
void decodeBit(uint16_t s0, uint16_t s1, size_t pos)
{
static const uint16_t COST_TABLE_0[] = {0, 0, 0, 0, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
static const uint16_t COST_TABLE_1[] = {0, 0xFFFF, 0xFFFF, 0, 0, 0xFFFF, 0xFFFF, 0};
for(uint8_t i = 0; i < NUM_STATES/2; i++)
{
uint32_t metric = q_AbsDiff(COST_TABLE_0[i], s0)
+ q_AbsDiff(COST_TABLE_1[i], s1);
uint32_t m0 = prevMetrics[i] + metric;
uint32_t m1 = prevMetrics[i + NUM_STATES/2] + (0x1FFFE - metric);
uint32_t m2 = prevMetrics[i] + (0x1FFFE - metric);
uint32_t m3 = prevMetrics[i + NUM_STATES/2] + metric;
uint8_t i0 = 2 * i;
uint8_t i1 = i0 + 1;
if(m0 >= m1)
{
history[pos]|=(1<<i0);
currMetrics[i0] = m1;
}
else
{
history[pos]&=~(1<<i0);
currMetrics[i0] = m0;
}
if(m2 >= m3)
{
history[pos]|=(1<<i1);
currMetrics[i1] = m3;
}
else
{
history[pos]&=~(1<<i1);
currMetrics[i1] = m2;
}
}
//swap
uint32_t tmp[NUM_STATES];
for(uint8_t i=0; i<NUM_STATES; i++)
{
tmp[i]=currMetrics[i];
}
for(uint8_t i=0; i<NUM_STATES; i++)
{
currMetrics[i]=prevMetrics[i];
prevMetrics[i]=tmp[i];
}
}
/**
* History chainback to obtain final byte array.
*
* @param out: destination byte array for decoded data.
* @param pos: starting position for the chainback.
* @param len: length of the output in bits.
* @return minimum Viterbi cost at the end of the decode sequence.
*/
uint32_t chainback(uint8_t* out, size_t pos, uint16_t len)
{
uint8_t state = 0;
size_t bitPos = len+4;
memset(out, 0, (len-1)/8+1);
while(pos > 0)
{
bitPos--;
pos--;
uint16_t bit = history[pos]&((1<<(state>>4)));
state >>= 1;
if(bit)
{
state |= 0x80;
out[bitPos/8]|=1<<(7-(bitPos%8));
}
}
uint32_t cost = prevMetrics[0];
for(size_t i = 0; i < NUM_STATES; i++)
{
uint32_t m = prevMetrics[i];
if(m < cost) cost = m;
}
return cost;
}
/**
* Utility function to compute the absolute value of a difference between
* two fixed-point values.
*
* @param v1: first value
* @param v2: second value
* @return abs(v1-v2)
*/
uint16_t q_AbsDiff(const uint16_t v1, const uint16_t v2)
{
if(v2 > v1) return v2 - v1;
return v1 - v2;
}
/**
* Reset the decoder state.
*
*/
void reset(void)
{
memset((uint8_t*)history, 0, 2*244);
memset((uint8_t*)currMetrics, 0, 4*NUM_STATES);
memset((uint8_t*)prevMetrics, 0, 4*NUM_STATES);
memset((uint8_t*)currMetricsData, 0, 4*NUM_STATES);
memset((uint8_t*)prevMetricsData, 0, 4*NUM_STATES);
}