M17_Implementations/SP5WWP/m17-coder/m17-coder-sym.c

483 wiersze
12 KiB
C

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "../inc/m17.h"
#include "golay.h"
#include "crc.h"
//#define FN60_DEBUG
struct LSF
{
uint8_t dst[6];
uint8_t src[6];
uint8_t type[2];
uint8_t meta[112/8];
uint8_t crc[2];
} lsf, next_lsf;
uint8_t lich[6]; //48 bits packed raw, unencoded LICH
uint8_t lich_encoded[12]; //96 bits packed, encoded LICH
uint8_t enc_bits[SYM_PER_PLD*2]; //type-2 bits, unpacked
uint8_t rf_bits[SYM_PER_PLD*2]; //type-4 bits, unpacked
uint8_t data[16], next_data[16]; //raw payload, packed bits
uint16_t fn=0; //16-bit Frame Number (for the stream mode)
uint8_t lich_cnt=0; //0..5 LICH counter
uint8_t got_lsf=0; //have we filled the LSF struct yet?
uint8_t finished=0;
void send_Preamble(const uint8_t type)
{
float symb;
if(type) //pre-BERT
{
for(uint16_t i=0; i<192/2; i++) //40ms * 4800 = 192
{
symb=-3.0;
fwrite((uint8_t*)&symb, sizeof(float), 1, stdout);
symb=+3.0;
fwrite((uint8_t*)&symb, sizeof(float), 1, stdout);
}
}
else //pre-LSF
{
for(uint16_t i=0; i<192/2; i++) //40ms * 4800 = 192
{
symb=+3.0;
fwrite((uint8_t*)&symb, sizeof(float), 1, stdout);
symb=-3.0;
fwrite((uint8_t*)&symb, sizeof(float), 1, stdout);
}
}
}
void send_Syncword(const uint16_t sword)
{
float symb;
for(uint8_t i=0; i<16; i+=2)
{
symb=symbol_map[(sword>>(14-i))&3];
fwrite((uint8_t*)&symb, sizeof(float), 1, stdout);
}
}
//send the data (can be used for both LSF and frames)
void send_data(uint8_t* in)
{
float s=0.0;
for(uint16_t i=0; i<SYM_PER_PLD; i++) //40ms * 4800 - 8 (syncword)
{
s=symbol_map[in[2*i]*2+in[2*i+1]];
fwrite((uint8_t*)&s, sizeof(float), 1, stdout);
}
}
void send_EoT()
{
float symb=+3.0;
for(uint16_t i=0; i<192; i++) //40ms * 4800 = 192
{
fwrite((uint8_t*)&symb, sizeof(float), 1, stdout);
}
}
//out - unpacked bits
//in - packed raw bits
//fn - frame number
void conv_Encode_Frame(uint8_t* out, uint8_t* in, uint16_t fn)
{
uint8_t pp_len = sizeof(P_2);
uint8_t p=0; //puncturing pattern index
uint16_t pb=0; //pushed punctured bits
uint8_t ud[144+4+4]; //unpacked data
memset(ud, 0, 144+4+4);
//unpack frame number
for(uint8_t i=0; i<16; i++)
{
ud[4+i]=(fn>>(15-i))&1;
}
//unpack data
for(uint8_t i=0; i<16; i++)
{
for(uint8_t j=0; j<8; j++)
{
ud[4+16+i*8+j]=(in[i]>>(7-j))&1;
}
}
//encode
for(uint8_t i=0; i<144+4; i++)
{
uint8_t G1=(ud[i+4] +ud[i+1]+ud[i+0])%2;
uint8_t G2=(ud[i+4]+ud[i+3]+ud[i+2] +ud[i+0])%2;
//printf("%d%d", G1, G2);
if(P_2[p])
{
out[pb]=G1;
pb++;
}
p++;
p%=pp_len;
if(P_2[p])
{
out[pb]=G2;
pb++;
}
p++;
p%=pp_len;
}
//printf("pb=%d\n", pb);
}
//out - unpacked bits
//in - packed raw bits (LSF struct)
void conv_Encode_LSF(uint8_t* out, struct LSF *in)
{
uint8_t pp_len = sizeof(P_1);
uint8_t p=0; //puncturing pattern index
uint16_t pb=0; //pushed punctured bits
uint8_t ud[240+4+4]; //unpacked data
memset(ud, 0, 240+4+4);
//unpack DST
for(uint8_t i=0; i<8; i++)
{
ud[4+i] =((in->dst[0])>>(7-i))&1;
ud[4+i+8] =((in->dst[1])>>(7-i))&1;
ud[4+i+16]=((in->dst[2])>>(7-i))&1;
ud[4+i+24]=((in->dst[3])>>(7-i))&1;
ud[4+i+32]=((in->dst[4])>>(7-i))&1;
ud[4+i+40]=((in->dst[5])>>(7-i))&1;
}
//unpack SRC
for(uint8_t i=0; i<8; i++)
{
ud[4+i+48]=((in->src[0])>>(7-i))&1;
ud[4+i+56]=((in->src[1])>>(7-i))&1;
ud[4+i+64]=((in->src[2])>>(7-i))&1;
ud[4+i+72]=((in->src[3])>>(7-i))&1;
ud[4+i+80]=((in->src[4])>>(7-i))&1;
ud[4+i+88]=((in->src[5])>>(7-i))&1;
}
//unpack TYPE
for(uint8_t i=0; i<8; i++)
{
ud[4+i+96] =((in->type[0])>>(7-i))&1;
ud[4+i+104]=((in->type[1])>>(7-i))&1;
}
//unpack META
for(uint8_t i=0; i<8; i++)
{
ud[4+i+112]=((in->meta[0])>>(7-i))&1;
ud[4+i+120]=((in->meta[1])>>(7-i))&1;
ud[4+i+128]=((in->meta[2])>>(7-i))&1;
ud[4+i+136]=((in->meta[3])>>(7-i))&1;
ud[4+i+144]=((in->meta[4])>>(7-i))&1;
ud[4+i+152]=((in->meta[5])>>(7-i))&1;
ud[4+i+160]=((in->meta[6])>>(7-i))&1;
ud[4+i+168]=((in->meta[7])>>(7-i))&1;
ud[4+i+176]=((in->meta[8])>>(7-i))&1;
ud[4+i+184]=((in->meta[9])>>(7-i))&1;
ud[4+i+192]=((in->meta[10])>>(7-i))&1;
ud[4+i+200]=((in->meta[11])>>(7-i))&1;
ud[4+i+208]=((in->meta[12])>>(7-i))&1;
ud[4+i+216]=((in->meta[13])>>(7-i))&1;
}
//unpack CRC
for(uint8_t i=0; i<8; i++)
{
ud[4+i+224]=((in->crc[0])>>(7-i))&1;
ud[4+i+232]=((in->crc[1])>>(7-i))&1;
}
//encode
for(uint8_t i=0; i<240+4; i++)
{
uint8_t G1=(ud[i+4] +ud[i+1]+ud[i+0])%2;
uint8_t G2=(ud[i+4]+ud[i+3]+ud[i+2] +ud[i+0])%2;
//printf("%d%d", G1, G2);
if(P_1[p])
{
out[pb]=G1;
pb++;
}
p++;
p%=pp_len;
if(P_1[p])
{
out[pb]=G2;
pb++;
}
p++;
p%=pp_len;
}
//printf("pb=%d\n", pb);
}
uint16_t LSF_CRC(struct LSF *in)
{
uint8_t d[28];
memcpy(&d[0], in->dst, 6);
memcpy(&d[6], in->src, 6);
memcpy(&d[12], in->type, 2);
memcpy(&d[14], in->meta, 14);
return CRC_M17(d, 28);
}
//main routine
int main(void)
{
//debug
//printf("%06X\n", golay24_encode(1)); //golay encoder codeword test
//printf("%d -> %d -> %d\n", 1, intrl_seq[1], intrl_seq[intrl_seq[1]]); //interleaver bijective reciprocality test, f(f(x))=x
//return 0;
if(fread(&(next_lsf.dst), 6, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.src), 6, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.type), 2, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.meta), 14, 1, stdin)<1) finished=1;
if(fread(next_data, 16, 1, stdin)<1) finished=1;
while(!finished)
{
if(lich_cnt == 0)
{
lsf = next_lsf;
//calculate LSF CRC
uint16_t ccrc=LSF_CRC(&lsf);
lsf.crc[0]=ccrc>>8;
lsf.crc[1]=ccrc&0xFF;
}
memcpy(data, next_data, sizeof(data));
//we could discard the data we already have
if(fread(&(next_lsf.dst), 6, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.src), 6, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.type), 2, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.meta), 14, 1, stdin)<1) finished=1;
if(fread(next_data, 16, 1, stdin)<1) finished=1;
if(got_lsf) //stream frames
{
//send stream frame syncword
send_Syncword(SYNC_STR);
//extract LICH from the whole LSF
switch(lich_cnt)
{
case 0:
lich[0]=lsf.dst[0];
lich[1]=lsf.dst[1];
lich[2]=lsf.dst[2];
lich[3]=lsf.dst[3];
lich[4]=lsf.dst[4];
break;
case 1:
lich[0]=lsf.dst[5];
lich[1]=lsf.src[0];
lich[2]=lsf.src[1];
lich[3]=lsf.src[2];
lich[4]=lsf.src[3];
break;
case 2:
lich[0]=lsf.src[4];
lich[1]=lsf.src[5];
lich[2]=lsf.type[0];
lich[3]=lsf.type[1];
lich[4]=lsf.meta[0];
break;
case 3:
lich[0]=lsf.meta[1];
lich[1]=lsf.meta[2];
lich[2]=lsf.meta[3];
lich[3]=lsf.meta[4];
lich[4]=lsf.meta[5];
break;
case 4:
lich[0]=lsf.meta[6];
lich[1]=lsf.meta[7];
lich[2]=lsf.meta[8];
lich[3]=lsf.meta[9];
lich[4]=lsf.meta[10];
break;
case 5:
lich[0]=lsf.meta[11];
lich[1]=lsf.meta[12];
lich[2]=lsf.meta[13];
lich[3]=lsf.crc[0];
lich[4]=lsf.crc[1];
break;
default:
;
break;
}
lich[5]=lich_cnt<<5;
//encode the LICH
uint32_t val;
val=golay24_encode((lich[0]<<4)|(lich[1]>>4));
lich_encoded[0]=(val>>16)&0xFF;
lich_encoded[1]=(val>>8)&0xFF;
lich_encoded[2]=(val>>0)&0xFF;
val=golay24_encode(((lich[1]&0x0F)<<8)|lich[2]);
lich_encoded[3]=(val>>16)&0xFF;
lich_encoded[4]=(val>>8)&0xFF;
lich_encoded[5]=(val>>0)&0xFF;
val=golay24_encode((lich[3]<<4)|(lich[4]>>4));
lich_encoded[6]=(val>>16)&0xFF;
lich_encoded[7]=(val>>8)&0xFF;
lich_encoded[8]=(val>>0)&0xFF;
val=golay24_encode(((lich[4]&0x0F)<<8)|lich[5]);
lich_encoded[9]=(val>>16)&0xFF;
lich_encoded[10]=(val>>8)&0xFF;
lich_encoded[11]=(val>>0)&0xFF;
//unpack LICH (12 bytes)
memset(enc_bits, 0, SYM_PER_PLD*2);
for(uint8_t i=0; i<12; i++)
{
for(uint8_t j=0; j<8; j++)
enc_bits[i*8+j]=(lich_encoded[i]>>(7-j))&1;
}
//encode the rest of the frame
conv_Encode_Frame(&enc_bits[96], data, finished ? (fn | 0x8000) : fn);
//reorder bits
for(uint16_t i=0; i<SYM_PER_PLD*2; i++)
rf_bits[i]=enc_bits[intrl_seq[i]];
//randomize
for(uint16_t i=0; i<SYM_PER_PLD*2; i++)
{
if((rand_seq[i/8]>>(7-(i%8)))&1) //flip bit if '1'
{
if(rf_bits[i])
rf_bits[i]=0;
else
rf_bits[i]=1;
}
}
//send dummy symbols (debug)
/*float s=0.0;
for(uint8_t i=0; i<SYM_PER_PLD; i++) //40ms * 4800 - 8 (syncword)
fwrite((uint8_t*)&s, sizeof(float), 1, stdout);*/
//send frame data
send_data(rf_bits);
/*printf("\tDATA: ");
for(uint8_t i=0; i<16; i++)
printf("%02X", data[i]);
printf("\n");*/
//increment the Frame Number
fn = (fn + 1) % 0x8000;
//increment the LICH counter
lich_cnt = (lich_cnt + 1) % 6;
//debug-only
#ifdef FN60_DEBUG
if(fn==6*10)
return 0;
#endif
}
else //LSF
{
got_lsf=1;
//encode LSF data
conv_Encode_LSF(enc_bits, &lsf);
//send out the preamble and LSF
send_Preamble(0); //0 - LSF preamble, as opposed to 1 - BERT preamble
//send LSF syncword
send_Syncword(SYNC_LSF);
//reorder bits
for(uint16_t i=0; i<SYM_PER_PLD*2; i++)
rf_bits[i]=enc_bits[intrl_seq[i]];
//randomize
for(uint16_t i=0; i<SYM_PER_PLD*2; i++)
{
if((rand_seq[i/8]>>(7-(i%8)))&1) //flip bit if '1'
{
if(rf_bits[i])
rf_bits[i]=0;
else
rf_bits[i]=1;
}
}
//send LSF data
send_data(rf_bits);
//send dummy symbols (debug)
/*float s=0.0;
for(uint8_t i=0; i<184; i++) //40ms * 4800 - 8 (syncword)
write((uint8_t*)&s, sizeof(float), 1, stdout);*/
/*printf("DST: ");
for(uint8_t i=0; i<6; i++)
printf("%02X", lsf.dst[i]);
printf(" SRC: ");
for(uint8_t i=0; i<6; i++)
printf("%02X", lsf.src[i]);
printf(" TYPE: ");
for(uint8_t i=0; i<2; i++)
printf("%02X", lsf.type[i]);
printf(" META: ");
for(uint8_t i=0; i<14; i++)
printf("%02X", lsf.meta[i]);
printf(" CRC: ");
for(uint8_t i=0; i<2; i++)
printf("%02X", lsf.crc[i]);
printf("\n");*/
}
if (finished)
send_EoT();
}
return 0;
}