Hamlib/rigs/yaesu/ft980.c

1456 wiersze
39 KiB
C

/*
* ft980.c - (C) Stephane Fillod 2004-2010
* (C) Wolfgang Buesser 2010
*
* (C) Mathew Breton 2021
*
* This shared library provides an API for communicating
* via serial interface to an FT-980 using the "CAT" interface
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/*
* FT-980 Hamlib API functions considered to be Stable:
* sadly, none yet
*
* Functions considered to be Beta:
* init * cleanup
* set_freq * get_freq
* set_mode * get_mode
* set_mem * get_mem
* open * close
*
* Functions considered to be Alpha:
* set_vfo * get_vfo
*
* Functions not yet implemented
* get_xit * set_xit
* set_func * get_func
* get_ptt * set_ptt
* get_dcd
* set_rptr_shift * get_rptr_shift
* set_rptr_offs * get_rptr_offs
* set_split_freq * get_split_freq
* set_split_mode * get_split_mode
* set_split_freq_mode * get_split_freq_mode
* set_split_vfo * get_split_vfo
* set_ts * get_ts
* vfo_op
*
* Functions the radio does not support: see readme.ft980 for more details
* power2mW * mW2power
* newcat_get_ant * newcat_set_ant
* set_dcs_code * get_dcs_code
* set_tone * get_tone
* set_ctcss_tone * get_ctcss_tone
* set_dcs_sql * get_dcs_sql
* set_tone_sql * get_tone_sql
* set_ctcss_sql * get_ctcss_sql
* set_powerstat * get_powerstat
* set_ant * get_ant
* send_dtmf * recv_dtmf
* send_morse * stop_morse
* wait_morse * send_voice_mem
* set_trn * get_trn
* set_channel * get_channel
* set_bank * scan
* set_parm * get_parm
* get_info
* reset
* set_vfo_opt
* decode_event
*
* No idea yet what these do
* set_chan_all_cb
* get_chan_all_cb
* set_conf
* get_conf
*/
#include <hamlib/config.h>
#include <stdlib.h>
#include <string.h> /* String function definitions */
#include <unistd.h> /* UNIX standard function definitions */
#include <sys/time.h> /* for timeofday call */
#include "hamlib/rig.h"
#include "serial.h"
#include "misc.h"
#include "bandplan.h"
#include "yaesu.h"
#include "ft980.h"
/*
* Private data
*/
struct ft980_priv_data
{
_ft980_memory_t update_data; /* returned data */
vfo_t current_vfo; /* active VFO from last cmd */
struct timeval status_tv; /* update_data caching */
};
/*************************************************************************************
* Private Prototype Declarations
*/
static int ft980_transaction(RIG *rig, const unsigned char *cmd,
unsigned char *data, int expected_len);
static int ft980_get_status_data(RIG *rig);
/* Dump routines are for debug purposes */
static void dump_freq(unsigned char *data);
static void dump_vfo(unsigned char data);
static void dump_mode(unsigned char data);
static void dump_switch(unsigned char data);
static void dump_if_shift(unsigned char data);
static void dump_rptr_split_code(unsigned char data);
static void dump_fsk_shift(unsigned char data);
static void dump_if_width(unsigned char data);
static void dump_mem_shift_flag(unsigned char data);
static void dump_clar_flag(unsigned char data);
static void dump_tab_flag(unsigned char data);
static void dump_freq_select_sws(unsigned char data);
static void dump_mode_sw(unsigned char data);
static void dump_mem_ch_sw(unsigned char data);
static void dump_status_flag_bits(unsigned char data);
static void dump_memory(_ft980_memory_t *memory);
static void dump_freq(unsigned char *data)
{
rig_debug(RIG_DEBUG_TRACE, "%02x%02x%02x%02x ", data[3], data[2], data[1],
data[0]);
}
static void dump_vfo(unsigned char data)
{
switch ((unsigned int)data)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", "GEN");
break;
case 128:
rig_debug(RIG_DEBUG_TRACE, "%s", "HAM");
break;
}
}
static void dump_mode(unsigned char data)
{
switch ((unsigned int)data)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", " LSB\n");
break;
case 1:
rig_debug(RIG_DEBUG_TRACE, "%s", " USB\n");
break;
case 2:
rig_debug(RIG_DEBUG_TRACE, "%s", " CW-W\n");
break;
case 3:
rig_debug(RIG_DEBUG_TRACE, "%s", " CW-N\n");
break;
case 4:
rig_debug(RIG_DEBUG_TRACE, "%s", " AM-W\n");
break;
case 5:
rig_debug(RIG_DEBUG_TRACE, "%s", " AM-N\n");
break;
case 6:
rig_debug(RIG_DEBUG_TRACE, "%s", " FSK\n");
break;
case 7:
rig_debug(RIG_DEBUG_TRACE, "%s", " FM\n");
break;
}
}
static void dump_switch(unsigned char data)
{
switch ((unsigned int)data)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", "OFF");
break;
case 1:
rig_debug(RIG_DEBUG_TRACE, "%s", "ON ");
break;
}
}
static void dump_if_shift(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s:%d\n", __func__, data - 15);
}
static void dump_rptr_split_code(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s:%02x\n", __func__, data);
}
static void dump_fsk_shift(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s:%02x\n", __func__, data);
}
static void dump_if_width(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s:%d\n", __func__, data);
}
static void dump_mem_shift_flag(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s:", __func__);
switch ((unsigned int)data)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", "OFF\n");
break;
case 16:
rig_debug(RIG_DEBUG_TRACE, "%s", "ON\n");
break;
}
}
static void dump_clar_flag(unsigned char data)
{
unsigned char RX_CLAR = data & 0x20;
unsigned char TX_CLAR = data & 0x40;
rig_debug(RIG_DEBUG_TRACE, "%s", "CLAR_SHIFT RX/TX:");
switch ((unsigned int)RX_CLAR)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", "OFF ");
break;
case 0x20:
rig_debug(RIG_DEBUG_TRACE, "%s", "ON ");
break;
}
switch ((unsigned int)TX_CLAR)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", " OFF ");
break;
case 0x40:
rig_debug(RIG_DEBUG_TRACE, "%s", " ON ");
break;
}
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
}
static void dump_tab_flag(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s", "TAB FLAG :");
switch (data)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", "OFF\n");
break;
case 0x80:
rig_debug(RIG_DEBUG_TRACE, "%s", "ON\n");
break;
}
}
static void dump_freq_select_sws(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s", "freq_select_sws :");
switch ((unsigned int)data)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", "VFO ");
break;
case 1:
rig_debug(RIG_DEBUG_TRACE, "%s", "MR ");
break;
case 2:
rig_debug(RIG_DEBUG_TRACE, "%s", "RX_M");
break;
case 3:
rig_debug(RIG_DEBUG_TRACE, "%s", "RX_V");
break;
}
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
}
static void dump_mode_sw(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "%s", "mode_sw :");
switch ((unsigned int)data)
{
case 0:
rig_debug(RIG_DEBUG_TRACE, "%s", "LSB ");
break;
case 1:
rig_debug(RIG_DEBUG_TRACE, "%s", "USB ");
break;
case 2:
rig_debug(RIG_DEBUG_TRACE, "%s", "CW-W");
break;
case 3:
rig_debug(RIG_DEBUG_TRACE, "%s", "CW-N");
break;
case 4:
rig_debug(RIG_DEBUG_TRACE, "%s", "AM-W");
break;
case 5:
rig_debug(RIG_DEBUG_TRACE, "%s", "AM-N");
break;
case 6:
rig_debug(RIG_DEBUG_TRACE, "%s", "FSK");
break;
case 7:
rig_debug(RIG_DEBUG_TRACE, "%s", "FM");
break;
}
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
}
static void dump_mem_ch_sw(unsigned char data)
{
rig_debug(RIG_DEBUG_TRACE, "mem_ch_sw :%d\n", data + 1);
}
static void dump_status_flag_bits(unsigned char data)
{
unsigned char TX = data & 0x01;
unsigned char SPLIT = data & 0x08;
unsigned char VFO = data & 0x20;
unsigned char CLAR = data & 0x40;
rig_debug(RIG_DEBUG_TRACE, "%s", "status_flag_bits :");
if (TX)
{
rig_debug(RIG_DEBUG_TRACE, "%s", "TX ");
}
else
{
rig_debug(RIG_DEBUG_TRACE, "%s", "RX ");
}
if (SPLIT)
{
rig_debug(RIG_DEBUG_TRACE, "%s", "SPLIT ");
}
else
{
rig_debug(RIG_DEBUG_TRACE, "%s", "SIMPLEX ");
}
if (VFO)
{
rig_debug(RIG_DEBUG_TRACE, "%s", "VFO ");
}
else
{
rig_debug(RIG_DEBUG_TRACE, "%s", "MEMORY ");
}
if (CLAR)
{
rig_debug(RIG_DEBUG_TRACE, "%s", "CLAR_ON ");
}
else
{
rig_debug(RIG_DEBUG_TRACE, "%s", "CLAR_OFF");
}
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
}
static void dump_memory(_ft980_memory_t *memory)
{
if (!rig_need_debug(RIG_DEBUG_TRACE))
{
return;
}
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_1 :");
dump_freq(memory->mem_1);
dump_vfo(memory->vfo_1);
dump_mode(memory->mode_1);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_2 :");
dump_freq(memory->mem_2);
dump_vfo(memory->vfo_2);
dump_mode(memory->mode_2);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_3 :");
dump_freq(memory->mem_3);
dump_vfo(memory->vfo_3);
dump_mode(memory->mode_3);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_4 :");
dump_freq(memory->mem_4);
dump_vfo(memory->vfo_4);
dump_mode(memory->mode_4);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_5 :");
dump_freq(memory->mem_5);
dump_vfo(memory->vfo_5);
dump_mode(memory->mode_5);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_6 :");
dump_freq(memory->mem_6);
dump_vfo(memory->vfo_6);
dump_mode(memory->mode_6);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_7 :");
dump_freq(memory->mem_7);
dump_vfo(memory->vfo_7);
dump_mode(memory->mode_7);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_8 :");
dump_freq(memory->mem_8);
dump_vfo(memory->vfo_8);
dump_mode(memory->mode_8);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_9 :");
dump_freq(memory->mem_9);
dump_vfo(memory->vfo_9);
dump_mode(memory->mode_9);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_10 :");
dump_freq(memory->mem_10);
dump_vfo(memory->vfo_10);
dump_mode(memory->mode_10);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_11 :");
dump_freq(memory->mem_11);
dump_vfo(memory->vfo_11);
dump_mode(memory->mode_11);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_12 :");
dump_freq(memory->mem_12);
dump_vfo(memory->vfo_12);
dump_mode(memory->mode_12);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_13 :");
dump_freq(memory->mem_13);
dump_vfo(memory->vfo_13);
dump_mode(memory->mode_13);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_14 :");
dump_freq(memory->mem_14);
dump_vfo(memory->vfo_14);
dump_mode(memory->mode_14);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_15 :");
dump_freq(memory->mem_15);
dump_vfo(memory->vfo_15);
dump_mode(memory->mode_15);
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_16 :");
dump_freq(memory->mem_16);
dump_vfo(memory->vfo_16);
dump_mode(memory->mode_16);
rig_debug(RIG_DEBUG_TRACE, "%s", "gen_vfo_freq :");
dump_freq(memory->gen_vfo_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\nHAM :");
dump_freq(memory->ham_vfo_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n ");
dump_vfo(memory->vfo);
dump_mode(memory->mode);
rig_debug(RIG_DEBUG_TRACE, "%s", "clar_freq :");
dump_freq(memory->clar_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_shift_freq :");
dump_freq(memory->mem_shift_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
rig_debug(RIG_DEBUG_TRACE, "%s", "mem_clar_freq :");
dump_freq(memory->mem_clar_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
rig_debug(RIG_DEBUG_TRACE, "%s", " ");
dump_vfo(memory->vfo);
dump_mode(memory->mode);
rig_debug(RIG_DEBUG_TRACE, "%s", "ldb_flag :");
dump_switch(memory->ldb_flag);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
rig_debug(RIG_DEBUG_TRACE, "%s", "ext_ctl_flag :");
dump_switch(memory->ext_ctl_flag);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
dump_if_shift(memory->if_shift);
dump_rptr_split_code(memory->rptr_split_code);
dump_fsk_shift(memory->fsk_shift);
dump_if_width(memory->if_width);
dump_mem_shift_flag(memory->mem_shift_flag);
dump_clar_flag(memory->clar_flag);
dump_tab_flag(memory->tab_flag);
dump_freq_select_sws(memory->freq_select_sws);
rig_debug(RIG_DEBUG_TRACE, "%s", "offset_sw :");
dump_switch(memory->offset_sw);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
dump_mode_sw(memory->mode_sw);
dump_mem_ch_sw(memory->mem_ch_sw);
rig_debug(RIG_DEBUG_TRACE, "%s", "lower_tab_freq :");
dump_freq(memory->lower_tab_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
rig_debug(RIG_DEBUG_TRACE, "%s", "upper_tab_freq :");
dump_freq(memory->upper_tab_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
rig_debug(RIG_DEBUG_TRACE, "%s", " ");
dump_vfo(memory->op_vfo);
dump_mode(memory->op_mode);
rig_debug(RIG_DEBUG_TRACE, "%s", "op_freq :");
dump_freq(memory->op_freq);
rig_debug(RIG_DEBUG_TRACE, "%s", "\n");
dump_status_flag_bits(memory->status_flag_bits);
}
int ft980_transaction(RIG *rig, const unsigned char *cmd, unsigned char *data,
int expected_len)
{
int retval;
unsigned char echo_back[YAESU_CMD_LENGTH];
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
rig_flush(&rig->state.rigport);
retval = write_block(&rig->state.rigport, cmd, YAESU_CMD_LENGTH);
if (retval < 0)
{
return retval;
}
retval = read_block(&rig->state.rigport, echo_back, YAESU_CMD_LENGTH);
if (retval < 0)
{
return retval;
}
if (retval != YAESU_CMD_LENGTH
|| (memcmp(echo_back, cmd, YAESU_CMD_LENGTH) != 0))
{
return -RIG_EPROTO;
}
retval = write_block(&rig->state.rigport, cmd_OK, YAESU_CMD_LENGTH);
if (retval < 0)
{
return retval;
}
retval = read_block(&rig->state.rigport, data, expected_len);
if (retval < 0)
{
return retval;
}
if (retval != expected_len)
{
return -RIG_EPROTO;
}
return RIG_OK;
}
int ft980_get_status_data(RIG *rig)
{
unsigned char cmd[YAESU_CMD_LENGTH] = { 0x00, 0x00, 0x00, 0x00, 0x01 };
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
int retval;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!rig_check_cache_timeout(&priv->status_tv, FT980_CACHE_TIMEOUT))
{
return RIG_OK;
}
retval = ft980_transaction(rig, cmd, (unsigned char *)&priv->update_data,
FT980_ALL_STATUS_LENGTH);
if (retval != RIG_OK)
{
return retval;
}
/* update cache date */
gettimeofday(&priv->status_tv, NULL);
dump_memory(&priv->update_data);
return retval;
}
/****************************************************************************
* rig_init*
*
* Initialize memory & rig private data structure
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Nothing special here
*
*/
int ft980_init(RIG *rig)
{
struct ft980_priv_data *priv;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!rig)
{
return -RIG_EINVAL;
}
rig->state.priv = (struct ft980_priv_data *) calloc(1,
sizeof(struct ft980_priv_data));
if (!rig->state.priv)
{
return -RIG_ENOMEM;
}
priv = (struct ft980_priv_data *)rig->state.priv;
memset(priv, 0, sizeof(struct ft980_priv_data));
// Initialize operating vfo mode to current VFO
priv->current_vfo = RIG_VFO_MAIN;
return RIG_OK;
}
/****************************************************************************
* rig_cleanup*
*
* Release memory in rig private data structure for a clean exit
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Nothing special here
*
*/
int ft980_cleanup(RIG *rig)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!rig)
{
return -RIG_EINVAL;
}
if (rig->state.priv)
{
free(rig->state.priv);
}
rig->state.priv = NULL;
return RIG_OK;
}
/****************************************************************************
* rig_open*
*
* Initialize memory & rig private data structure
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Should be able to optimize
* ToDo: add check so we don't get stuck in EXT CTRL toggle trap/loop
*
*/
int ft980_open(RIG *rig)
{
unsigned char echo_back[YAESU_CMD_LENGTH];
struct ft980_priv_data *priv;
int retry_count1 = 0;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
priv = (struct ft980_priv_data *)rig->state.priv;
/* send Ext Cntl ON: Activate CAT */
do
{
int retval;
int retry_count2 = 0;
do
{
write_block(&rig->state.rigport, cmd_ON_OFF,
YAESU_CMD_LENGTH);
retval = read_block(&rig->state.rigport, echo_back, YAESU_CMD_LENGTH);
}
while (retval != 5 && retry_count2++ < rig->state.rigport.retry);
write_block(&rig->state.rigport, cmd_OK, YAESU_CMD_LENGTH);
retval = read_block(&rig->state.rigport, (unsigned char *) &priv->update_data,
FT980_ALL_STATUS_LENGTH);
}
while (!priv->update_data.ext_ctl_flag
&& retry_count1++ < rig->state.rigport.retry);
return RIG_OK;
}
/****************************************************************************
* rig_close*
*
* Send command to toggle out of EXT CTRL mode
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Nothing special here
* Could be optimized.
*
*/
int ft980_close(RIG *rig)
{
unsigned char echo_back[YAESU_CMD_LENGTH];
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
int retry_count1 = 0;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
do
{
int retval;
int retry_count2 = 0;
do
{
write_block(&rig->state.rigport, cmd_ON_OFF,
YAESU_CMD_LENGTH);
retval = read_block(&rig->state.rigport, echo_back, YAESU_CMD_LENGTH);
}
while (retval != 5 && retry_count2++ < rig->state.rigport.retry);
write_block(&rig->state.rigport, cmd_OK, YAESU_CMD_LENGTH);
retval = read_block(&rig->state.rigport, (unsigned char *) &priv->update_data,
FT980_ALL_STATUS_LENGTH);
}
while (priv->update_data.ext_ctl_flag
&& retry_count1++ < rig->state.rigport.retry);
return RIG_OK;
}
/*
* Only the current VFO frequency can be set
* Other Hamlib backends (ex FT-990) switch VFO, change freq, then exit
* They do not return to the original VFO.
* We will stick with this convention for now.
*
* ToDo: Check return data to verify frequency was set correctly
*/
/*
* rig_set_freq*
*
* Set frequency for a given VFO
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* vfo | input | currVFO, VFOA, VFOB, MEM
* freq | input | 100000 - 30000000
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Passing currVFO to vfo will use the currently selected VFO
* obtained from the priv->current_vfo data structure.
* In all other cases the passed vfo is selected if it differs
* from the currently selected VFO.
*
* Issues: an error will occur with the 4.0 rig.c set_cache_freq routine when
* targeting VFO_MEM.
*/
int ft980_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
unsigned char cmd[YAESU_CMD_LENGTH] = { 0x00, 0x00, 0x00, 0x00, 0x08};
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
int err;
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
rig_debug(RIG_DEBUG_TRACE, " %s: passed vfo = 0x%02x\n", __func__, vfo);
rig_debug(RIG_DEBUG_TRACE, " %s: passed freq = %lf Hz\n", __func__, freq);
// Set to selected VFO
if (vfo == RIG_VFO_CURR)
{
vfo = priv->current_vfo;
rig_debug(RIG_DEBUG_TRACE, " %s: priv->current.vfo = 0x%02x\n",
__func__, vfo);
}
else
{
if (vfo != priv->current_vfo)
{
err = ft980_set_vfo(rig, vfo);
if (err != RIG_OK)
{
return err;
}
}
}
/* store bcd format in cmd (MSB) */
to_bcd(cmd, freq / 10, 8);
/* why is this done ? */
rig_force_cache_timeout(&priv->status_tv);
/* Frequency set */
return ft980_transaction(rig, cmd, UPDATE_DATA_OFS(&priv->update_data, 5), 5);
}
/*
* We can get HAM, GEN, Memory Shift (?), "Operating"
* What is memory "Shift"?
*/
/*
* rig_get_freq*
*
* Get frequency for a given VFO
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* vfo | input | currVFO, Main, VFO, VFOA, VFOB, MEM
* freq * | output | 100000 - 30000000
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Passing currVFO to vfo will use the currently selected VFO
* obtained from the priv->current_vfo data structure.
* In all other cases the passed vfo is selected if it differs
* from the currently selected VFO.
*/
int ft980_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
int retval;
freq_t f;
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
rig_debug(RIG_DEBUG_TRACE, " %s: passed vfo = 0x%02x\n", __func__, vfo);
/* Frequency get */
retval = ft980_get_status_data(rig);
if (retval != RIG_OK)
{
return retval;
}
switch (vfo)
{
case RIG_VFO_CURR:
f = from_bcd(priv->update_data.op_freq, 8);
break;
case RIG_VFO_MAIN:
f = from_bcd(priv->update_data.ham_vfo_freq, 8);
break;
case RIG_VFO_SUB:
f = from_bcd(priv->update_data.gen_vfo_freq, 8);
break;
case RIG_VFO_MEM:
f = from_bcd(priv->update_data.mem_shift_freq, 8);
break;
default:
return -RIG_EINVAL;
}
rig_debug(RIG_DEBUG_TRACE,
"%s: Selected Memory Freq = %lf\n", __func__, f * 10);
*freq = f * 10; /* return displayed frequency */
return RIG_OK;
}
/*
* Only the current VFO mode can be set
* Other Hamlib backends (ex FT-990) switch VFO, change mode, then exit
* They do not return to the original VFO.
* We will stick with this convention for now.
*
* ToDo: Check return data to verify mode was set correctly
*/
/*
* rig_set_mode*
*
* Set mode for a given VFO
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* vfo | input | currVFO, Main, Sub, MEM
* mode | input | byte
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Passing currVFO to vfo will use the currently selected VFO
* obtained from the priv->current_vfo data structure.
* In all other cases the passed vfo is selected if it differs
* from the currently selected VFO.
*/
int ft980_set_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width)
{
unsigned char cmd[YAESU_CMD_LENGTH] = { 0x00, 0x00, 0x00, 0x00, 0x0A};
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
unsigned char md;
int err;
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
rig_debug(RIG_DEBUG_TRACE, " %s: passed vfo = 0x%02x\n", __func__, vfo);
rig_debug(RIG_DEBUG_TRACE, " %s: passed mode = %s\n", __func__,
rig_strrmode(mode));
rig_debug(RIG_DEBUG_TRACE, " %s: passed width = %ld Hz\n", __func__, width);
// Set to selected VFO
if (vfo == RIG_VFO_CURR)
{
vfo = priv->current_vfo;
rig_debug(RIG_DEBUG_TRACE, "%s: priv->current.vfo = 0x%02x\n",
__func__, vfo);
}
else
{
if (vfo != priv->current_vfo)
{
err = ft980_set_vfo(rig, vfo);
if (err != RIG_OK)
{
return err;
}
}
}
/*
* translate mode from generic to ft980 specific
*/
switch (mode)
{
case RIG_MODE_CW :
md = FT980_CMD0A_MD_CW;
break;
case RIG_MODE_USB:
md = FT980_CMD0A_MD_USB;
break;
case RIG_MODE_LSB:
md = FT980_CMD0A_MD_LSB;
break;
case RIG_MODE_FM:
md = FT980_CMD0A_MD_FM;
break;
case RIG_MODE_AM:
md = FT980_CMD0A_MD_AM;
break;
case RIG_MODE_RTTY:
md = FT980_CMD0A_MD_RTTY;
break;
default:
return -RIG_EINVAL; /* sorry, wrong MODE */
}
if (width != RIG_PASSBAND_NOCHANGE
&& width != RIG_PASSBAND_NORMAL
&& width < rig_passband_normal(rig, mode))
{
switch (md)
{
case FT980_CMD0A_MD_CW:
md = FT980_CMD0A_MD_CWN;
break;
case FT980_CMD0A_MD_AM:
md = FT980_CMD0A_MD_AMN;
break;
}
}
cmd[3] = md;
/* Might be deprecated in Hamlib 4.1 */
rig_force_cache_timeout(&priv->status_tv);
/* Mode set */
return ft980_transaction(rig, cmd, UPDATE_DATA_OFS(&priv->update_data,
FT980_OTHER_STATUS_LENGTH), FT980_OTHER_STATUS_LENGTH);
}
/*
* rig_get_mode
*
* get mode eg AM, CW etc
* ??? What is the difference between byte 6 (operating mode vfo_op
* and byte 30 (selected VFO mode) ???
*/
/*
* rig_get_mode*
*
* Get frequency for a given VFO
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* vfo | input | currVFO, Main, VFO, VFOA, VFOB, MEM
* mode * | output | byte
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Passing currVFO to vfo will use the currently selected VFO
* obtained from the priv->current_vfo data structure.
* In all other cases the passed vfo is selected if it differs
* from the currently selected VFO.
*/
int ft980_get_mode(RIG *rig, vfo_t vfo, rmode_t *mode, pbwidth_t *width)
{
unsigned char my_mode; /* ft890 mode, mode offset */
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
int retval, norm;
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
rig_debug(RIG_DEBUG_TRACE, " %s: passed vfo = 0x%02x\n", __func__, vfo);
retval = ft980_get_status_data(rig);
if (retval != RIG_OK)
{
return retval;
}
switch (vfo)
{
case RIG_VFO_CURR:
my_mode = priv->update_data.op_mode;
rig_debug(RIG_DEBUG_TRACE,
" %s: Current VFO Mode = 0x%02x\n", __func__, my_mode);
break;
case RIG_VFO_MAIN:
case RIG_VFO_SUB:
/* This is a point of confusion: what exactly is byte 30? */
my_mode = priv->update_data.mode;
rig_debug(RIG_DEBUG_TRACE,
" %s: HAM/GEN VFO Mode = 0x%02x\n", __func__, my_mode);
break;
case RIG_VFO_MEM:
my_mode = priv->update_data.mem_mode;
rig_debug(RIG_DEBUG_TRACE,
" %s: MEM VFO Mode = 0x%02x\n", __func__, my_mode);
break;
default:
return -RIG_EVFO;
}
/*
* translate mode from ft980 to generic.
*/
switch (my_mode)
{
case 0:
*mode = RIG_MODE_LSB;
norm = 1;
break;
case 1:
*mode = RIG_MODE_USB;
norm = 1;
break;
case 2:
*mode = RIG_MODE_CW;
norm = 1;
break;
case 3:
*mode = RIG_MODE_CW;
norm = 0;
break;
case 4:
*mode = RIG_MODE_AM;
norm = 1;
break;
case 5:
*mode = RIG_MODE_AM;
norm = 0;
break;
case 6:
*mode = RIG_MODE_RTTY;
norm = 1;
break;
case 7:
*mode = RIG_MODE_FM;
norm = 1;
break;
default:
return -RIG_EPROTO; /* Oops! file bug report */
}
rig_debug(RIG_DEBUG_TRACE, " %s: Hamlib mode = %s\n", __func__,
rig_strrmode(*mode));
if (norm)
{
*width = rig_passband_normal(rig, *mode);
}
else
{
*width = rig_passband_narrow(rig, *mode);
}
rig_debug(RIG_DEBUG_TRACE, " %s: Filter width = %d Hz\n", __func__,
(int)*width);
return RIG_OK;
}
int ft980_set_split_vfo(RIG *rig, vfo_t vfo, split_t split, vfo_t tx_vfo)
{
return -RIG_ENIMPL;
#if 0 // deprecated as was ignored before now
unsigned char cmd[YAESU_CMD_LENGTH] = { 0x00, 0x00, 0x00, 0x00, 0x8e};
/*
* this can be misleading as Yaesu call it "Full duplex"
* or "sat mode", and split Yaesu terms is repeater shift.
*/
cmd[4] = split == RIG_SPLIT_ON ? 0x0e : 0x8e;
return write_block(&rig->state.rigport, (char *) cmd, YAESU_CMD_LENGTH);
#endif
}
int ft980_set_split_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
return -RIG_ENIMPL;
}
int ft980_set_split_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width)
{
return -RIG_ENIMPL;
}
int ft980_set_mem(RIG *rig, vfo_t vfo, int ch)
{
unsigned char cmd[YAESU_CMD_LENGTH] = { 0x00, 0x00, 0x00, 0x00, 0x0A };
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (ch > 16 || ch < 1)
{
return -RIG_EINVAL;
}
cmd[3] = ch - 1;
return ft980_transaction(rig, cmd, UPDATE_DATA_OFS(&priv->update_data,
FT980_OTHER_STATUS_LENGTH), FT980_OTHER_STATUS_LENGTH);
}
/****************************************************************************
* rig_get_mem
*
* Get the number of the currently selected memory
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* vfo | input | Not applicable for FT-980
* ch | output | pointer to channel integer to be returned
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: returns currently selected memory channel regardlessof front
* panel knob selection (can be different when CAT is enabled).
*/
int ft980_get_mem(RIG *rig, vfo_t vfo, int *ch)
{
struct ft980_priv_data *priv = (struct ft980_priv_data *)rig->state.priv;
int retval;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
retval = ft980_get_status_data(rig);
if (retval != RIG_OK)
{
return retval;
}
*ch = priv->update_data.mem_ch_sw + 1;
return RIG_OK;
}
/****************************************************************************
* rig_set_vfo*
*
* Set operational VFO
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* vfo | input | currVFO, VFO_MAIN, VFOB/GEN, MEM
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments: Passing currVFO to vfo will essentially "no op"
* In all other cases the passed vfo is selected if it differs
* from the currently selected VFO.
*/
/* VFO_CURR: Whatever is shown in op_freq/op_mode */
/* VFO_MAIN: Mode = VFO, VFO = MAIN */
/* VFO_SUB: Mode = VFO, VFO = GEN */
/* VFO_MEM: Mode = Memory, VFO = don't care */
int ft980_set_vfo(RIG *rig, vfo_t vfo)
{
unsigned char cmd[YAESU_CMD_LENGTH] = { 0x00, 0x00, 0x00, 0x00, 0x0A };
struct ft980_priv_data *priv;
int err;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!rig)
{
return -RIG_EARG;
}
rig_debug(RIG_DEBUG_TRACE, "%s: passed vfo = %s\n", __func__, rig_strvfo(vfo));
priv = (struct ft980_priv_data *)rig->state.priv;
switch (vfo)
{
case RIG_VFO_CURR:
rig_debug(RIG_DEBUG_TRACE,
"%s: priv->current_vfo = 0x%02x\n", __func__, priv->current_vfo);
return RIG_OK;
break;
case RIG_VFO_MAIN:
cmd[3] = FT980_CMD0A_VFO_SEL_HAM;
rig_debug(RIG_DEBUG_TRACE, "%s: set VFO GEN/HAM = 0x%02x\n",
__func__, cmd[3]);
err = ft980_transaction(rig, cmd, UPDATE_DATA_OFS(&priv->update_data,
FT980_OTHER_STATUS_LENGTH), FT980_OTHER_STATUS_LENGTH);
if (err != RIG_OK)
{
return err;
}
cmd[3] = FT980_CMD0A_FREQ_SEL_VFO;
break;
case RIG_VFO_SUB:
cmd[3] = FT980_CMD0A_VFO_SEL_GEN;
rig_debug(RIG_DEBUG_TRACE, "%s: set VFO GEN/HAM = 0x%02x\n",
__func__, cmd[3]);
err = ft980_transaction(rig, cmd, UPDATE_DATA_OFS(&priv->update_data,
FT980_OTHER_STATUS_LENGTH), FT980_OTHER_STATUS_LENGTH);
if (err != RIG_OK)
{
return err;
}
cmd[3] = FT980_CMD0A_FREQ_SEL_VFO;
break;
case RIG_VFO_MEM:
cmd[3] = FT980_CMD0A_FREQ_SEL_MR;
break;
default:
return -RIG_EVFO;
}
rig_debug(RIG_DEBUG_TRACE, "%s: set VFO Status = %s\n",
__func__, rig_strvfo(vfo));
return ft980_transaction(rig, cmd, UPDATE_DATA_OFS(&priv->update_data,
FT980_OTHER_STATUS_LENGTH), FT980_OTHER_STATUS_LENGTH);
}
/****************************************************************************
* rig_get_vfo*
*
* Get operational VFO
*
* Parameter | Type | Accepted/Expected Values
* -------------------------------------------------------------------------
* RIG * | input | pointer to private data
* vfo * | output | currVFO, VFO_MAIN, VFOB/GEN, MEM
* -------------------------------------------------------------------------
* Returns RIG_OK on success or an error code on failure
*
* Comments:
* VFO_MAIN: If (Status = VFO && VFO = MAIN) || (Status = RXV && VFO = MAIN)
* VFO_SUB: If (Status = VFO && VFO = GEN) || (Status = RXV && VFO = GEN)
* VFO_MEM: If *Status = Memory) || (Status = RXM)
*
* If operating in split (RXM, RXV) then get_vfo returns the receive vfo
*/
int ft980_get_vfo(RIG *rig, vfo_t *vfo)
{
int err;
struct ft980_priv_data *priv;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!rig)
{
return -RIG_EARG;
}
priv = (struct ft980_priv_data *)rig->state.priv;
/* Get flags for VFO status */
err = ft980_get_status_data(rig);
if (err != RIG_OK)
{
return err;
}
rig_debug(RIG_DEBUG_TRACE,
"%s: status_flag_bits = 0x%02x\n", __func__,
priv->update_data.status_flag_bits);
rig_debug(RIG_DEBUG_TRACE,
"%s: op_vfo = %s\n", __func__,
rig_strvfo(priv->update_data.op_vfo));
/* Decode the VFO Setting and VFO States */
if (!(priv->update_data.status_flag_bits & FT_980_STATUSFLAG_VFO_MASK))
{
priv->current_vfo = RIG_VFO_MEM;
}
else if (priv->update_data.op_vfo == FT980_VFO_HAM_SEL)
{
priv->current_vfo = RIG_VFO_MAIN;
}
else if (priv->update_data.op_vfo == FT980_VFO_GEN_SEL)
{
priv->current_vfo = RIG_VFO_SUB;
}
else
{
return -RIG_EVFO;
}
rig_debug(RIG_DEBUG_TRACE,
"%s: stat_vfo = %s\n", __func__, rig_strvfo(priv->current_vfo));
*vfo = priv->current_vfo;
return RIG_OK;
}