Hamlib/rotators/celestron/celestron.c

275 wiersze
6.8 KiB
C

/*
* Hamlib Rotator backend - Celestron
* Copyright (c) 2011 by Stephane Fillod
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include <ctype.h>
#include "hamlib/rotator.h"
#include "serial.h"
#include "misc.h"
#include "register.h"
#include "celestron.h"
#define ACK "#"
#define BUFSZ 128
/**
* celestron_transaction
*
* cmdstr - Command to be sent to the rig.
* data - Buffer for reply string. Can be NULL, indicating that no reply is
* is needed, but answer will still be read.
* data_len - in: Size of buffer. It is the caller's responsibily to provide
* a large enough buffer for all possible replies for a command.
*
* returns:
* RIG_OK - if no error occurred.
* RIG_EIO - if an I/O error occurred while sending/receiving data.
* RIG_ETIMEOUT - if timeout expires without any characters received.
*/
static int
celestron_transaction(ROT *rot, const char *cmdstr,
char *data, size_t data_len)
{
struct rot_state *rs;
int retval;
int retry_read = 0;
char replybuf[BUFSZ];
rs = &rot->state;
transaction_write:
rig_flush(&rs->rotport);
if (cmdstr)
{
retval = write_block(&rs->rotport, (unsigned char *) cmdstr, strlen(cmdstr));
if (retval != RIG_OK)
{
goto transaction_quit;
}
}
/* Always read the reply to know whether the cmd went OK */
if (!data)
{
data = replybuf;
}
if (!data_len)
{
data_len = BUFSZ;
}
/* the answer */
memset(data, 0, data_len);
retval = read_string(&rs->rotport, (unsigned char *) data, data_len,
ACK, strlen(ACK), 0, 1);
if (retval < 0)
{
if (retry_read++ < rot->state.rotport.retry)
{
goto transaction_write;
}
goto transaction_quit;
}
/* check for acknowledge */
if (retval < 1 || data[retval - 1] != '#')
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected response, len %d: '%s'\n", __func__,
retval, data);
return -RIG_EPROTO;
}
data[retval - 1] = '\0';
retval = RIG_OK;
transaction_quit:
return retval;
}
static int
celestron_set_position(ROT *rot, azimuth_t az, elevation_t el)
{
char cmdstr[32];
int retval;
rig_debug(RIG_DEBUG_TRACE, "%s called: %f %f\n", __func__, az, el);
/*
Note: if the telescope has not been aligned, the RA/DEC values will not be meaningful and the AZM-ALT values will
be relative to where the telescope was powered on. After alignment, RA/DEC values will reflect the actual sky,
azimuth will be indexed to North equals 0 and altitude will be indexed with 0 equal to the orientation where the optical
tube is perpendicular to the azimuth axis.
*/
SNPRINTF(cmdstr, sizeof(cmdstr), "B%04X,%04X",
(unsigned)((az / 360.) * 65535),
(unsigned)((el / 360.) * 65535));
retval = celestron_transaction(rot, cmdstr, NULL, 0);
return retval;
}
static int
celestron_get_position(ROT *rot, azimuth_t *az, elevation_t *el)
{
char posbuf[32];
int retval;
unsigned w;
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
/* Get Azm-Alt */
retval = celestron_transaction(rot, "Z", posbuf, sizeof(posbuf));
if (retval != RIG_OK || strlen(posbuf) < 9 || posbuf[4] != ',')
{
return retval < 0 ? retval : -RIG_EPROTO;
}
if (sscanf(posbuf, "%04X", &w) != 1)
{
return -RIG_EPROTO;
}
*az = ((azimuth_t)w * 360.) / 65536.;
if (sscanf(posbuf + 5, "%04X", &w) != 1)
{
return -RIG_EPROTO;
}
*el = ((elevation_t)w * 360.) / 65536.;
rig_debug(RIG_DEBUG_TRACE, "%s: (az, el) = (%.1f, %.1f)\n",
__func__, *az, *el);
return RIG_OK;
}
static int
celestron_stop(ROT *rot)
{
int retval;
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
/* Cancel Goto */
retval = celestron_transaction(rot, "M", NULL, 0);
return retval;
}
static const char *
celestron_get_info(ROT *rot)
{
static char info[32];
char str[8];
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
if (celestron_transaction(rot, "V", str, sizeof(str)) != RIG_OK)
{
return NULL;
}
SNPRINTF(info, sizeof(info), "V%c.%c", str[0], str[1]);
return info;
}
/* ************************************************************************* */
/*
* Celestron Nexstar telescope(rotator) capabilities.
*
* Protocol documentation:
* from Celestron:
* http://www.celestron.com/c3/images/files/downloads/1154108406_nexstarcommprot.pdf
* from Orion Teletrack Az-G:
* http://content.telescope.com/rsc/img/catalog/product/instructions/29295.pdf
*/
const struct rot_caps nexstar_rot_caps =
{
ROT_MODEL(ROT_MODEL_NEXSTAR),
.model_name = "NexStar", // Any Celestron starting with version 1.2
.mfg_name = "Celestron",
.version = "20220109.0",
.copyright = "LGPL",
.status = RIG_STATUS_UNTESTED,
.rot_type = ROT_TYPE_AZEL,
.port_type = RIG_PORT_SERIAL,
.serial_rate_min = 9600,
.serial_rate_max = 9600,
.serial_data_bits = 8,
.serial_stop_bits = 1,
.serial_parity = RIG_PARITY_NONE,
.serial_handshake = RIG_HANDSHAKE_NONE,
.write_delay = 0,
.post_write_delay = 0,
.timeout = 3500, /* worst case scenario */
.retry = 1,
.min_az = 0.0,
.max_az = 360.0,
.min_el = 0.0,
.max_el = 180.0,
.get_position = celestron_get_position,
.set_position = celestron_set_position,
.stop = celestron_stop,
.get_info = celestron_get_info,
};
/* ************************************************************************* */
DECLARE_INITROT_BACKEND(celestron)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
rot_register(&nexstar_rot_caps);
return RIG_OK;
}
/* ************************************************************************* */
/* end of file */