kopia lustrzana https://github.com/Hamlib/Hamlib
196 wiersze
4.5 KiB
C++
196 wiersze
4.5 KiB
C++
/* -*-C++-*-
|
|
*******************************************************************************
|
|
*
|
|
* File: microtune_eval_board.cc
|
|
* Description:
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2001 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GNU Radio
|
|
*
|
|
* GNU Radio is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* GNU Radio is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU Radio; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "microtune_eval_board.h"
|
|
#include "microtune_eval_board_defs.h"
|
|
#include "serial.h"
|
|
#include "i2cio_pp.h"
|
|
#include "i2c.h"
|
|
#include <cmath>
|
|
|
|
static int AGC_DAC_I2C_ADDR = 0x2C;
|
|
|
|
microtune_eval_board::microtune_eval_board (port_t *port)
|
|
{
|
|
m_ppio = port;
|
|
m_i2cio = new i2cio_pp (m_ppio);
|
|
m_i2c = new i2c (m_i2cio);
|
|
|
|
// disable upstream amplifier
|
|
par_lock (m_ppio);
|
|
unsigned char t;
|
|
par_read_data (m_ppio, &t);
|
|
t &= ~(UT_DP_TX_ENABLE | UT_DP_TX_SDA | UT_DP_TX_SCL);
|
|
t |= UT_DP_TX_AS;
|
|
par_write_data (m_ppio, t);
|
|
par_unlock (m_ppio);
|
|
}
|
|
|
|
microtune_eval_board::~microtune_eval_board ()
|
|
{
|
|
delete m_i2c;
|
|
delete m_i2cio;
|
|
delete m_i2c;
|
|
}
|
|
|
|
|
|
//! is the eval board present?
|
|
bool
|
|
microtune_eval_board::board_present_p ()
|
|
{
|
|
bool result = true;
|
|
par_lock (m_ppio);
|
|
|
|
unsigned char t;
|
|
par_read_status (m_ppio, &t);
|
|
if ((t & UT_SP_SHOULD_BE_ZERO) != 0
|
|
|| (t & UT_SP_SHOULD_BE_ONE) != UT_SP_SHOULD_BE_ONE)
|
|
result = false;
|
|
|
|
// could also see if SCL is looped back or not, but that seems like overkill
|
|
|
|
par_unlock (m_ppio);
|
|
return result;
|
|
}
|
|
|
|
// returns true iff successful
|
|
bool
|
|
microtune_eval_board::i2c_write (int addr, const unsigned char *buf, int nbytes)
|
|
{
|
|
return m_i2c->write (addr, buf, nbytes);
|
|
}
|
|
|
|
// returns number of bytes read or -1 if error
|
|
int
|
|
microtune_eval_board::i2c_read (int addr, unsigned char *buf, int max_bytes)
|
|
{
|
|
return m_i2c->read (addr, buf, max_bytes);
|
|
}
|
|
|
|
/*
|
|
* ----------------------------------------------------------------
|
|
* AGC stuff
|
|
*
|
|
* We're using a MAX518 8-bit 5V dual dac for setting the AGC's
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
microtune_eval_board::write_dac (int which, int value)
|
|
{
|
|
unsigned char cmd[2];
|
|
cmd[0] = which & 1;
|
|
cmd[1] = value;
|
|
i2c_write (AGC_DAC_I2C_ADDR, cmd, sizeof (cmd));
|
|
}
|
|
|
|
void
|
|
microtune_eval_board::write_both_dacs (int value0, int value1)
|
|
{
|
|
unsigned char cmd[4];
|
|
cmd[0] = 0;
|
|
cmd[1] = value0;
|
|
cmd[2] = 1;
|
|
cmd[3] = value1;
|
|
i2c_write (AGC_DAC_I2C_ADDR, cmd, sizeof (cmd));
|
|
}
|
|
|
|
static int scale_volts (float volts)
|
|
{
|
|
int n;
|
|
n = (int) rint (volts * (256 / 5.0));
|
|
if (n < 0)
|
|
n = 0;
|
|
if (n > 255)
|
|
n = 255;
|
|
|
|
return n;
|
|
}
|
|
|
|
void
|
|
microtune_eval_board::set_RF_AGC_voltage (float volts)
|
|
{
|
|
write_dac (0, scale_volts (volts));
|
|
}
|
|
|
|
void
|
|
microtune_eval_board::set_IF_AGC_voltage (float volts)
|
|
{
|
|
write_dac (1, scale_volts (volts));
|
|
}
|
|
|
|
static const float RF_MIN_V = 1.5; // RF AGC control voltages
|
|
static const float RF_MAX_V = 4.0;
|
|
static const float IF_MIN_V = 2.0; // IF AGC control voltages
|
|
static const float IF_MAX_V = 4.0;
|
|
|
|
static const float MIN_AGC = 0; // bottom of synthetic range
|
|
static const float MAX_AGC = 1000; // top of synthetic range
|
|
|
|
static const float CUTOVER_POINT = 667;
|
|
|
|
|
|
// linear is in the range MIN_AGC to MAX_AGC
|
|
|
|
static float
|
|
linear_to_RF_AGC_voltage (float linear)
|
|
{
|
|
if (linear >= CUTOVER_POINT)
|
|
return RF_MAX_V;
|
|
|
|
float slope = (RF_MAX_V - RF_MIN_V) / CUTOVER_POINT;
|
|
return RF_MIN_V + linear * slope;
|
|
}
|
|
|
|
static float
|
|
linear_to_IF_AGC_voltage (float linear)
|
|
{
|
|
if (linear < CUTOVER_POINT)
|
|
return IF_MIN_V;
|
|
|
|
float slope = (IF_MAX_V - IF_MIN_V) / (MAX_AGC - CUTOVER_POINT);
|
|
return IF_MIN_V + (linear - CUTOVER_POINT) * slope;
|
|
}
|
|
|
|
void
|
|
microtune_eval_board::set_AGC (float v)
|
|
{
|
|
if (v < MIN_AGC)
|
|
v = MIN_AGC;
|
|
|
|
if (v > MAX_AGC)
|
|
v = MAX_AGC;
|
|
|
|
float rf_agc_voltage = linear_to_RF_AGC_voltage (v);
|
|
float if_agc_voltage = linear_to_IF_AGC_voltage (v);
|
|
|
|
set_RF_AGC_voltage (rf_agc_voltage);
|
|
set_IF_AGC_voltage (if_agc_voltage);
|
|
}
|