Hamlib/rigs/aor/aor.c

1501 wiersze
34 KiB
C

/*
* Hamlib AOR backend - main file
* Copyright (c) 2000-2010 by Stephane Fillod
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <hamlib/config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* String function definitions */
#include <unistd.h> /* UNIX standard function definitions */
#include <math.h>
#include <ctype.h>
#include "hamlib/rig.h"
#include "serial.h"
#include "misc.h"
#include "register.h"
#include "idx_builtin.h"
#include "aor.h"
/*
* acknowledge is CR
* Is \r portable enough?
*/
#define CR '\r'
#define EOM "\r"
#define BUFSZ 256
/*
* modes in use by the "MD" command of AR8000 and AR8200
*/
#define AR8K_WFM '0'
#define AR8K_NFM '1'
#define AR8K_AM '2'
#define AR8K_USB '3'
#define AR8K_LSB '4'
#define AR8K_CW '5'
#define AR8K_SFM '6'
#define AR8K_WAM '7'
#define AR8K_NAM '8'
/*
* aor_transaction
* We assume that rig!=NULL, rig->state!= NULL, data!=NULL, data_len!=NULL
* Otherwise, you'll get a nice seg fault. You've been warned!
* return value: RIG_OK if everything's fine, negative value otherwise
* TODO: error case handling
*/
static int aor_transaction(RIG *rig, const char *cmd, int cmd_len, char *data,
int *data_len)
{
int retval;
struct rig_state *rs;
char ackbuf[BUFSZ];
int ack_len;
rs = &rig->state;
rig_flush(&rs->rigport);
retval = write_block(&rs->rigport, (unsigned char *) cmd, cmd_len);
if (retval != RIG_OK)
{
return retval;
}
if (!data)
{
data = ackbuf;
}
if (!data_len)
{
data_len = &ack_len;
}
/*
* Do wait for a reply
*/
retval = read_string(&rs->rigport, (unsigned char *) data, BUFSZ, EOM,
strlen(EOM), 0, 1);
if (retval < 0)
{
return retval;
}
/* chop LF head when present */
if (retval >= 1 && data[0] == '\x0a')
{
retval--;
memmove(data, data + 1, retval);
}
*data_len = retval;
if (*data_len < BUFSZ)
{
data[*data_len] = '\0';
}
else
{
data[BUFSZ - 1] = '\0';
}
if (retval >= 1 && data[0] == '?')
{
/* command failed? resync with radio */
write_block(&rs->rigport, (unsigned char *) EOM, 1);
return -RIG_EPROTO;
}
return RIG_OK;
}
/*
* aor_close
* Assumes rig!=NULL
*/
int aor_close(RIG *rig)
{
/*
* terminate remote operation via the RS-232
* Note: use write_block() instead of aor_transaction
* since no reply is to be expected.
*/
return write_block(&rig->state.rigport, (unsigned char *) "EX" EOM, 3);
}
static int format_freq(char *buf, int buf_len, freq_t freq)
{
int lowhz;
int64_t f = (int64_t)freq;
/*
* actually, frequency must be like nnnnnnnnm0,
* where m must be 0 or 5 (for 50Hz).
*/
lowhz = f % 100;
f /= 100;
if (lowhz < 25)
{
lowhz = 0;
}
else if (lowhz < 75)
{
lowhz = 50;
}
else
{
lowhz = 100;
}
f = f * 100 + lowhz;
// cppcheck-suppress *
SNPRINTF(buf, buf_len, "RF%010"PRIll, f);
return strlen(buf);
}
/*
* aor_set_freq
* Assumes rig!=NULL
*/
int aor_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
char freqbuf[BUFSZ];
int freq_len;
freq_len = format_freq(freqbuf, sizeof(freqbuf), freq);
strcpy(freqbuf + freq_len, EOM);
freq_len += strlen(EOM);
return aor_transaction(rig, freqbuf, freq_len, NULL, NULL);
}
/*
* aor_get_freq
* Assumes rig!=NULL, freq!=NULL
*/
int aor_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
char *rfp;
int freq_len, retval;
char freqbuf[BUFSZ];
retval = aor_transaction(rig, "RX" EOM, 3, freqbuf, &freq_len);
if (retval != RIG_OK)
{
return retval;
}
rfp = strstr(freqbuf, "RF");
if (!rfp && rig->caps->rig_model == RIG_MODEL_AR8000)
{
rfp = strstr(freqbuf, "VA");
}
if (!rfp && rig->caps->rig_model == RIG_MODEL_AR8000)
{
rfp = strstr(freqbuf, "VB");
}
if (!rfp)
{
rig_debug(RIG_DEBUG_WARN, "NO RF in returned string in aor_get_freq: '%s'\n",
freqbuf);
return -RIG_EPROTO;
}
sscanf(rfp + 2, "%"SCNfreq, freq);
return RIG_OK;
}
/*
* aor_set_vfo
* Assumes rig!=NULL
*/
int aor_set_vfo(RIG *rig, vfo_t vfo)
{
char *vfocmd;
switch (vfo)
{
case RIG_VFO_VFO:
if (rig->caps->rig_model == RIG_MODEL_AR8000)
{
vfocmd = "RF" EOM;
}
else
{
vfocmd = "VF" EOM;
}
break;
case RIG_VFO_A: vfocmd = "VA" EOM; break;
case RIG_VFO_B: vfocmd = "VB" EOM; break;
case RIG_VFO_C: vfocmd = "VC" EOM; break;
case RIG_VFO_N(3): vfocmd = "VD" EOM; break;
case RIG_VFO_N(4): vfocmd = "VE" EOM; break;
case RIG_VFO_MEM: vfocmd = "MR" EOM; break;
default:
rig_debug(RIG_DEBUG_ERR, "aor_set_vfo: unsupported vfo %d\n",
vfo);
return -RIG_EINVAL;
}
return aor_transaction(rig, vfocmd, strlen(vfocmd), NULL, NULL);
}
/*
* aor_get_vfo
* Assumes rig!=NULL, freq!=NULL
*/
int aor_get_vfo(RIG *rig, vfo_t *vfo)
{
int vfo_len, retval;
char vfobuf[BUFSZ];
retval = aor_transaction(rig, "RX" EOM, 3, vfobuf, &vfo_len);
if (retval != RIG_OK)
{
return retval;
}
if (rig->caps->rig_model == RIG_MODEL_AR8000)
{
switch (vfobuf[0])
{
case 'S':
case 'D':
*vfo = RIG_VFO_VFO;
break;
case 'V':
*vfo = RIG_VFO_N(vfobuf[4] - 'A');
break;
case 'M':
*vfo = RIG_VFO_MEM;
break;
default:
rig_debug(RIG_DEBUG_ERR, "aor_get_vfo: unknown vfo %s\n",
vfobuf);
return -RIG_EINVAL;
}
}
else
{
switch (vfobuf[1])
{
case 'S':
case 'V':
case 'F': *vfo = RIG_VFO_VFO; break;
case 'A': *vfo = RIG_VFO_A; break;
case 'B': *vfo = RIG_VFO_B; break;
case 'C': *vfo = RIG_VFO_C; break;
case 'D': *vfo = RIG_VFO_N(3); break;
case 'E': *vfo = RIG_VFO_N(4); break;
case 'R': *vfo = RIG_VFO_MEM; break;
default:
rig_debug(RIG_DEBUG_ERR, "aor_get_vfo: unknown vfo %c\n",
vfobuf[1]);
return -RIG_EINVAL;
}
}
return RIG_OK;
}
int format8k_mode(RIG *rig, char *buf, int buf_len, rmode_t mode, pbwidth_t width)
{
int aormode;
switch (mode)
{
case RIG_MODE_AM:
if (rig->caps->rig_model == RIG_MODEL_AR8000)
{
aormode = AR8K_AM;
}
else
{
switch (width)
{
case RIG_PASSBAND_NORMAL:
case s_kHz(9): aormode = AR8K_AM; break;
case s_kHz(12): aormode = AR8K_WAM; break;
case s_kHz(3): aormode = AR8K_NAM; break;
case RIG_PASSBAND_NOCHANGE: aormode = AR8K_AM; break;
default:
rig_debug(RIG_DEBUG_ERR,
"%s: unsupported passband %s %d\n",
__func__,
rig_strrmode(mode), (int)width);
return -RIG_EINVAL;
}
}
break;
case RIG_MODE_CW: aormode = AR8K_CW; break;
case RIG_MODE_USB: aormode = AR8K_USB; break;
case RIG_MODE_LSB: aormode = AR8K_LSB; break;
case RIG_MODE_WFM: aormode = AR8K_WFM; break;
case RIG_MODE_FM:
if (rig->caps->rig_model == RIG_MODEL_AR8000)
{
aormode = AR8K_NFM;
}
else
{
switch (width)
{
case RIG_PASSBAND_NORMAL:
case s_kHz(12): aormode = AR8K_NFM; break;
case s_kHz(9): aormode = AR8K_SFM; break;
case RIG_PASSBAND_NOCHANGE: aormode = AR8K_NFM; break;
default:
rig_debug(RIG_DEBUG_ERR,
"%s: unsupported passband %s %d\n",
__func__,
rig_strrmode(mode), (int)width);
return -RIG_EINVAL;
}
}
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%s'\n",
__func__, rig_strrmode(mode));
return -RIG_EINVAL;
}
SNPRINTF(buf, buf_len, "MD%c", aormode);
return strlen(buf);
}
/*
* aor_set_mode
* Assumes rig!=NULL
*/
int aor_set_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
char mdbuf[9];
char mdbuf2[16] = "";
int mdbuf2_len, retval;
if (priv->format_mode(rig, mdbuf, sizeof(mdbuf), mode, width) <= 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: format_mode=%s failed?\n", __func__,
rig_strrmode(mode));
return -RIG_EINVAL;
}
strcat(mdbuf, EOM);
switch (rig->caps->rig_model)
{
case RIG_MODEL_AR5000:
case RIG_MODEL_AR5000A:
SNPRINTF(mdbuf2, sizeof(mdbuf2), "%.3s",
mdbuf); /* Extract first 'MD' part */
mdbuf2_len = strlen(mdbuf2);
strcpy(mdbuf2 + mdbuf2_len, EOM); /* Add delimiter */
mdbuf2_len = strlen(mdbuf2);
retval = aor_transaction(rig, mdbuf2, mdbuf2_len, NULL, NULL);
if (retval != RIG_OK) { return retval; }
strncpy(mdbuf2, mdbuf + 4, 3); /* Extract first 'BW' part */
mdbuf2[3] = '\0'; // in case strnpy produces and un-terminated string
mdbuf2_len = strlen(mdbuf2);
retval = aor_transaction(rig, mdbuf2, mdbuf2_len, NULL, NULL);
if (retval != RIG_OK) { return retval; }
break;
default:
retval = aor_transaction(rig, mdbuf, strlen(mdbuf), NULL, NULL);
}
return retval;
}
/*
* parse8k_aor_mode * don't care about aorwidth,
* because there's no such BW command
*/
int parse8k_aor_mode(RIG *rig, char aormode, char aorwidth, rmode_t *mode,
pbwidth_t *width)
{
*width = RIG_PASSBAND_NORMAL;
switch (aormode)
{
case AR8K_AM: *mode = RIG_MODE_AM; break;
case AR8K_NAM:
*mode = RIG_MODE_AM;
*width = rig_passband_narrow(rig, *mode);
break;
case AR8K_WAM:
*mode = RIG_MODE_AM;
*width = rig_passband_wide(rig, *mode);
break;
case AR8K_CW: *mode = RIG_MODE_CW; break;
case AR8K_USB: *mode = RIG_MODE_USB; break;
case AR8K_LSB: *mode = RIG_MODE_LSB; break;
case AR8K_WFM: *mode = RIG_MODE_WFM; break;
case AR8K_NFM: *mode = RIG_MODE_FM; break;
case AR8K_SFM:
*mode = RIG_MODE_FM;
*width = rig_passband_narrow(rig, *mode);
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%c'\n",
__func__, aormode);
return -RIG_EINVAL;
}
if (*width == RIG_PASSBAND_NORMAL)
{
*width = rig_passband_normal(rig, *mode);
}
return RIG_OK;
}
/*
* aor_get_mode
* Assumes rig!=NULL, mode!=NULL
*/
int aor_get_mode(RIG *rig, vfo_t vfo, rmode_t *mode, pbwidth_t *width)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
char ackbuf[BUFSZ], *mdp;
char *mdp2;
int ack_len, ack2_len, retval;
retval = aor_transaction(rig, "MD" EOM, 3, ackbuf, &ack_len);
if (retval != RIG_OK)
{
return retval;
}
/*
* search MD, because on the AR5000, AU is also returned
* by MD request
*/
mdp = strstr(ackbuf, "MD");
if (!mdp)
{
rig_debug(RIG_DEBUG_ERR, "%s: no MD in returned string: '%s'\n",
__func__, ackbuf);
return -RIG_EPROTO;
}
if (rig->caps->rig_model == RIG_MODEL_AR5000 ||
rig->caps->rig_model == RIG_MODEL_AR5000A)
{
char ackbuf2[BUFSZ];
retval = aor_transaction(rig, "BW" EOM, 3, ackbuf2, &ack2_len);
if (retval != RIG_OK)
{
return retval;
}
mdp2 = strstr(ackbuf2, "BW");
}
else
{
mdp2 = mdp;
}
retval = priv->parse_aor_mode(rig, mdp[2], mdp2[2], mode, width);
return retval;
}
/*
* aor_set_ts
* Assumes rig!=NULL
*/
int aor_set_ts(RIG *rig, vfo_t vfo, shortfreq_t ts)
{
char tsbuf[BUFSZ];
/*
* actually, tuning step must be like nnnnm0,
* where m must be 0 or 5 (for 50Hz).
*/
SNPRINTF(tsbuf, sizeof(tsbuf), "ST%06ld" EOM, ts);
return aor_transaction(rig, tsbuf, strlen(tsbuf), NULL, NULL);
}
/*
* aor_set_level
* Assumes rig!=NULL, rig->state.priv!=NULL
*/
int aor_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val)
{
struct rig_state *rs;
char lvlbuf[BUFSZ];
int agc;
rs = &rig->state;
switch (level)
{
case RIG_LEVEL_ATT:
{
unsigned att = 0;
unsigned i;
for (i = 0; i < HAMLIB_MAXDBLSTSIZ && !RIG_IS_DBLST_END(rs->attenuator[i]); i++)
{
if (rs->attenuator[i] == val.i)
{
att = i + 1;
break;
}
}
/* should be caught by the front end */
if ((val.i != 0) && (i >= HAMLIB_MAXDBLSTSIZ
|| RIG_IS_DBLST_END(rs->attenuator[i])))
{
return -RIG_EINVAL;
}
SNPRINTF(lvlbuf, sizeof(lvlbuf), "AT%u" EOM, att);
break;
}
case RIG_LEVEL_AGC: /* AR5000 & AR5000A */
switch (val.i)
{
case RIG_AGC_FAST: agc = '0'; break;
case RIG_AGC_MEDIUM: agc = '1'; break;
case RIG_AGC_SLOW: agc = '2'; break;
case RIG_AGC_OFF:
default: agc = 'F';
}
SNPRINTF(lvlbuf, sizeof(lvlbuf), "AC%c" EOM, agc);
break;
default:
rig_debug(RIG_DEBUG_ERR, "Unsupported aor_set_level %d\n", (int)level);
return -RIG_EINVAL;
}
return aor_transaction(rig, lvlbuf, strlen(lvlbuf), NULL, NULL);
}
/*
* aor_get_level
* Assumes rig!=NULL, rig->state.priv!=NULL, val!=NULL
*/
int aor_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val)
{
struct rig_state *rs;
char lvlbuf[BUFSZ], ackbuf[BUFSZ];
int ack_len, retval;
rs = &rig->state;
switch (level)
{
case RIG_LEVEL_RAWSTR:
SNPRINTF(lvlbuf, sizeof(lvlbuf), "LM" EOM);
break;
case RIG_LEVEL_ATT:
SNPRINTF(lvlbuf, sizeof(lvlbuf), "AT" EOM);
break;
case RIG_LEVEL_AGC: /* AR5000 & AR5000A */
SNPRINTF(lvlbuf, sizeof(lvlbuf), "AC" EOM);
break;
default:
rig_debug(RIG_DEBUG_ERR, "Unsupported %s %d\n", __func__, (int)level);
return -RIG_EINVAL;
}
retval = aor_transaction(rig, lvlbuf, strlen(lvlbuf), ackbuf, &ack_len);
if (retval != RIG_OK)
{
return retval;
}
switch (level)
{
case RIG_LEVEL_RAWSTR:
if (ack_len < 4 || ackbuf[0] != 'L' || ackbuf[1] != 'M')
{
return -RIG_EPROTO;
}
if (rig->caps->rig_model == RIG_MODEL_AR8000)
{
sscanf(ackbuf + 2, "%x", &val->i);
val->i &= ~0x80; /* mask squelch status */
}
else if (rig->caps->rig_model == RIG_MODEL_AR8200 ||
rig->caps->rig_model == RIG_MODEL_AR8600)
{
sscanf(ackbuf + 3, "%d", &val->i);
}
else
{
sscanf(ackbuf + 3, "%x", &val->i);
}
break;
case RIG_LEVEL_ATT:
{
unsigned att;
if (ack_len < 4 || ackbuf[0] != 'A' || ackbuf[1] != 'T')
{
return -RIG_EPROTO;
}
if (rig->caps->rig_model == RIG_MODEL_AR8000)
{
att = ackbuf[2] - '0';
}
else
{
att = ackbuf[3] - '0';
}
if (att == 0)
{
val->i = 0;
break;
}
if (att > HAMLIB_MAXDBLSTSIZ || rs->attenuator[att - 1] == 0)
{
rig_debug(RIG_DEBUG_ERR, "Unsupported att %s %d\n",
__func__, att);
return -RIG_EPROTO;
}
val->i = rs->attenuator[att - 1];
break;
}
case RIG_LEVEL_AGC:
if (ack_len < 3 || ackbuf[0] != 'A' || ackbuf[1] != 'C')
{
return -RIG_EPROTO;
}
if (rig->caps->rig_model == RIG_MODEL_AR5000 ||
rig->caps->rig_model == RIG_MODEL_AR5000A)
{
/* AR5000A requires switching to be made on
3rd returned character. SM6PPS */
switch (ackbuf[2])
{
case '0': val->i = RIG_AGC_FAST; break;
case '1': val->i = RIG_AGC_MEDIUM; break;
case '2': val->i = RIG_AGC_SLOW; break;
case 'F':
default: val->i = RIG_AGC_OFF;
}
}
else
{
/* Left the switching on 4th position in case
models other than AR5000(A) use this. SM6PPS */
switch (ackbuf[3])
{
case '0': val->i = RIG_AGC_FAST; break;
case '1': val->i = RIG_AGC_MEDIUM; break;
case '2': val->i = RIG_AGC_SLOW; break;
case 'F':
default: val->i = RIG_AGC_OFF;
}
}
break;
default:
rig_debug(RIG_DEBUG_ERR, "Unsupported %s %d\n", __func__, (int)level);
return -RIG_EINVAL;
}
return RIG_OK;
}
/*
* aor_get_dcd
* Assumes rig!=NULL, rig->state.priv!=NULL, val!=NULL
*/
int aor_get_dcd(RIG *rig, vfo_t vfo, dcd_t *dcd)
{
char ackbuf[BUFSZ];
int ack_len, retval;
retval = aor_transaction(rig, "LM" EOM, 3, ackbuf, &ack_len);
if (retval != RIG_OK)
{
return retval;
}
if (ack_len < 2 || ackbuf[0] != 'L' || ackbuf[1] != 'M')
{
return -RIG_EPROTO;
}
*dcd = ackbuf[2] == '%' ? RIG_DCD_OFF : RIG_DCD_ON;
return RIG_OK;
}
/*
* aor_set_powerstat
* Assumes rig!=NULL, rig->state.priv!=NULL
*/
int aor_set_powerstat(RIG *rig, powerstat_t status)
{
if (status == RIG_POWER_ON)
{
return aor_transaction(rig, "X" EOM, 2, NULL, NULL);
}
/* turn off power */
return aor_transaction(rig, "QP" EOM, 3, NULL, NULL);
}
/*
* aor_vfo_op
* Assumes rig!=NULL
*/
int aor_vfo_op(RIG *rig, vfo_t vfo, vfo_op_t op)
{
char *aorcmd;
switch (op)
{
case RIG_OP_UP: aorcmd = "\x1e" EOM; break;
case RIG_OP_DOWN: aorcmd = "\x1f" EOM; break;
case RIG_OP_RIGHT: aorcmd = "\x1c" EOM; break;
case RIG_OP_LEFT: aorcmd = "\x1d" EOM; break;
case RIG_OP_MCL: aorcmd = "MQ" EOM; break;
default:
rig_debug(RIG_DEBUG_ERR, "aor_vfo_op: unsupported op %d\n",
op);
return -RIG_EINVAL;
}
return aor_transaction(rig, aorcmd, strlen(aorcmd), NULL, NULL);
}
/*
* aor_scan, scan operation
* Assumes rig!=NULL, rig->state.priv!=NULL
*/
int aor_scan(RIG *rig, vfo_t vfo, scan_t scan, int ch)
{
char *aorcmd;
switch (scan)
{
case RIG_SCAN_STOP:
/* Not sure how to stop the scanning.
* Maye by going by to MEM/VFO mode?
* Any clue? */
if (vfo == RIG_VFO_CURR)
{
vfo = RIG_VFO_MEM; /* supported by all the AOR rigs */
}
return rig_set_vfo(rig, vfo);
case RIG_SCAN_MEM: aorcmd = "MS" EOM; break;
case RIG_SCAN_SLCT: aorcmd = "SM" EOM; break;
case RIG_SCAN_PROG: aorcmd = "VS" EOM; break; /* edges are VFO A & VFO B */
case RIG_SCAN_VFO: aorcmd = "VV1" EOM;
break; /* VFO scan mode, VV0 for 2-VFO mode */
default:
rig_debug(RIG_DEBUG_ERR, "aor_scan: unsupported scan %d\n",
scan);
return -RIG_EINVAL;
}
return aor_transaction(rig, aorcmd, strlen(aorcmd), NULL, NULL);
}
/*
* aor_set_mem
* Assumes rig!=NULL
*/
int aor_set_mem(RIG *rig, vfo_t vfo, int ch)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
char membuf[BUFSZ];
int mem_num;
char bank_base;
/*
* FIXME: we're assuming the banks are split 50/50.
* MW should be called the first time instead,
* and sizing memorized.
*/
mem_num = ch % 100;
if (mem_num >= 50 && priv->bank_base1 != priv->bank_base2)
{
bank_base = priv->bank_base2;
mem_num -= 50;
}
else
{
bank_base = priv->bank_base1;
}
SNPRINTF(membuf, sizeof(membuf), "MR%c%02d" EOM,
bank_base + ch / 100, mem_num);
return aor_transaction(rig, membuf, strlen(membuf), NULL, NULL);
}
/*
* aor_get_mem
* Assumes rig!=NULL, freq!=NULL
*/
int aor_get_mem(RIG *rig, vfo_t vfo, int *ch)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
int mem_len, retval;
char membuf[BUFSZ];
retval = aor_transaction(rig, "MR" EOM, 3, membuf, &mem_len);
if (retval != RIG_OK)
{
return retval;
}
if (membuf[0] == '?' || membuf[2] == '?')
{
return -RIG_ENAVAIL;
}
sscanf(membuf + 3, "%d", ch);
/*
* FIXME: we're assuming the banks are split 50/50.
* MW should be called the first time instead,
* and sizing memorized.
*/
if (membuf[2] >= priv->bank_base2)
{
*ch += 100 * (membuf[2] - priv->bank_base2) + 50;
}
else
{
*ch += 100 * (membuf[2] - priv->bank_base1);
}
return RIG_OK;
}
/*
* aor_set_bank
* Assumes rig!=NULL
*/
int aor_set_bank(RIG *rig, vfo_t vfo, int bank)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
char membuf[BUFSZ];
SNPRINTF(membuf, sizeof(membuf), "MR%c" EOM, (bank % 10) + (bank < 10 ?
priv->bank_base1 : priv->bank_base2));
return aor_transaction(rig, membuf, strlen(membuf), NULL, NULL);
}
int aor_set_channel(RIG *rig, vfo_t vfo, const channel_t *chan)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
char aorcmd[BUFSZ];
int cmd_len;
SNPRINTF(aorcmd, sizeof(aorcmd), "MX%c%02d ",
chan->bank_num, chan->channel_num % 100);
cmd_len = strlen(aorcmd);
cmd_len += format_freq(aorcmd + cmd_len, sizeof(aorcmd) - cmd_len, chan->freq);
/*
* FIXME: automode
*/
cmd_len += snprintf(aorcmd + cmd_len, sizeof(aorcmd) - cmd_len, " AU%d ST%06d ",
0, (int)chan->tuning_step);
cmd_len += priv->format_mode(rig, aorcmd + cmd_len, sizeof(aorcmd) - cmd_len, chan->mode, chan->width);
cmd_len += snprintf(aorcmd + cmd_len, sizeof(aorcmd) - cmd_len, " AT%d TM%12s%s",
chan->levels[LVL_ATT].i ? 1 : 0, chan->channel_desc, EOM);
return aor_transaction(rig, aorcmd, cmd_len, NULL, NULL);
}
static int parse_chan_line(RIG *rig, channel_t *chan, char *basep,
const channel_cap_t *mem_caps)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
char *tagp;
int ts;
/*
* search for attribute tags in the line.
* Using strstr enable support for various models
* which may or may not have tag support.
*/
tagp = strstr(basep, "---");
if (tagp)
{
vfo_t vfo_save = chan->vfo;
int ch_save = chan->channel_num;
rig_debug(RIG_DEBUG_WARN, "%s: skipping, channel is empty: '%s'\n",
__func__, basep);
memset(chan, 0, sizeof(channel_t));
chan->vfo = vfo_save;
chan->channel_num = ch_save;
return -RIG_ENAVAIL;
}
/* bank_num */
if (mem_caps->bank_num)
{
tagp = strstr(basep, "MX");
if (!tagp)
{
rig_debug(RIG_DEBUG_WARN, "%s: no MX in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
chan->bank_num = tagp[2] - (tagp[2] >= priv->bank_base2 ?
priv->bank_base2 + 10 : priv->bank_base1);
}
/* pass */
if (mem_caps->flags)
{
tagp = strstr(basep, "MP");
if (!tagp)
{
rig_debug(RIG_DEBUG_WARN, "%s: no MP in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
chan->flags = tagp[2] == '0' ? 0 : RIG_CHFLAG_SKIP;
}
/* frequency */
if (mem_caps->freq)
{
tagp = strstr(basep, "RF");
if (!tagp)
{
rig_debug(RIG_DEBUG_WARN, "%s: no RF in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
sscanf(tagp + 2, "%"SCNfreq, &chan->freq);
}
/* channel desc */
if (mem_caps->tuning_step)
{
tagp = strstr(basep, "ST");
if (!tagp)
{
rig_debug(RIG_DEBUG_WARN, "%s: no ST in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
ts = chan->tuning_step;
sscanf(tagp + 2, "%d", &ts);
}
/* mode and width */
if (mem_caps->mode && mem_caps->width)
{
int retval;
char *tag2p;
tagp = strstr(basep, "MD");
if (!tagp && mem_caps->mode && mem_caps->width)
{
rig_debug(RIG_DEBUG_WARN, "%s: no MD in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
/* "BW" only on AR5000 */
tag2p = strstr(basep, "BW");
if (!tag2p)
{
tag2p = tagp;
}
retval = priv->parse_aor_mode(rig, tagp[2], tag2p[2], &chan->mode,
&chan->width);
if (retval != RIG_OK)
{
return retval;
}
}
/* auto-mode */
if (mem_caps->funcs & RIG_FUNC_ABM)
{
tagp = strstr(basep, "AU");
if (!tagp)
{
rig_debug(RIG_DEBUG_WARN, "%s: no AU in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
chan->funcs = tagp[2] == '0' ? 0 : RIG_FUNC_ABM;
}
/* attenuator */
if (mem_caps->levels & LVL_ATT)
{
tagp = strstr(basep, "AT");
if (!tagp)
{
rig_debug(RIG_DEBUG_WARN, "%s: no AT in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
chan->levels[LVL_ATT].i = tagp[2] == '0' ? 0 :
rig->caps->attenuator[tagp[2] - '0' - 1];
}
/* channel desc */
if (mem_caps->channel_desc)
{
int i;
tagp = strstr(basep, "TM");
if (!tagp)
{
rig_debug(RIG_DEBUG_WARN, "%s: no TM in returned string: '%s'\n",
__func__, basep);
return -RIG_EPROTO;
}
strncpy(chan->channel_desc, tagp + 2, 12);
chan->channel_desc[12] = '\0';
/* chop off trailing spaces */
for (i = 11; i > 0 && chan->channel_desc[i] == ' '; i--)
{
chan->channel_desc[i] = '\0';
}
}
return RIG_OK;
}
int aor_get_channel(RIG *rig, vfo_t vfo, channel_t *chan, int read_only)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
char aorcmd[BUFSZ];
int chan_len;
char chanbuf[BUFSZ];
int retval;
channel_cap_t *mem_caps = NULL;
chan_t *chan_list;
int channel_num = chan->channel_num;
chan_list = rig->caps->chan_list;
if (chan->vfo == RIG_VFO_CURR)
{
/*
* curr VFO mem_caps same as memory caps
*/
mem_caps = &chan_list[0].mem_caps;
}
else
{
int mem_num;
char bank_base;
/*
* find mem_caps in caps, we'll need it later
*/
int i;
for (i = 0; i < HAMLIB_CHANLSTSIZ && !RIG_IS_CHAN_END(chan_list[i]); i++)
{
if (channel_num >= chan_list[i].startc &&
channel_num <= chan_list[i].endc)
{
mem_caps = &chan_list[i].mem_caps;
break;
}
}
if (!mem_caps)
{
return -RIG_EINVAL;
}
/*
* FIXME: we're assuming the banks are split 50/50.
* MW should be called the first time instead,
* and sizing memorized.
*/
mem_num = channel_num % 100;
if (mem_num >= 50 && priv->bank_base1 != priv->bank_base2)
{
bank_base = priv->bank_base2;
mem_num -= 50;
}
else
{
bank_base = priv->bank_base1;
}
SNPRINTF(aorcmd, sizeof(aorcmd), "MR%c%02d" EOM,
bank_base + channel_num / 100, mem_num);
retval = aor_transaction(rig, aorcmd, strlen(aorcmd), chanbuf, &chan_len);
/* is the channel empty? */
if (retval == -RIG_EPROTO && chanbuf[0] == '?')
{
chan->freq = RIG_FREQ_NONE;
return -RIG_ENAVAIL;
}
if (retval != RIG_OK)
{
return retval;
}
}
SNPRINTF(aorcmd, sizeof(aorcmd), "RX" EOM);
retval = aor_transaction(rig, aorcmd, strlen(aorcmd), chanbuf, &chan_len);
if (retval != RIG_OK)
{
return retval;
}
retval = parse_chan_line(rig, chan, chanbuf, mem_caps);
if (!read_only)
{
// Set rig to channel values
rig_debug(RIG_DEBUG_ERR,
"%s: please contact hamlib mailing list to implement this\n", __func__);
rig_debug(RIG_DEBUG_ERR,
"%s: need to know if rig updates when channel read or not\n", __func__);
return -RIG_ENIMPL;
}
return retval;
}
#define LINES_PER_MA 10
int aor_get_chan_all_cb(RIG *rig, vfo_t vfo, chan_cb_t chan_cb, rig_ptr_t arg)
{
struct aor_priv_caps *priv = (struct aor_priv_caps *)rig->caps->priv;
int i, j, retval;
chan_t *chan_list = rig->state.chan_list;
channel_t *chan;
int chan_count;
char aorcmd[BUFSZ];
int chan_len;
char chanbuf[BUFSZ];
int chan_next = chan_list[0].startc;
chan_count = chan_list[0].endc - chan_list[0].startc + 1;
/*
* setting chan to NULL means the application
* has to provide a struct where to store data
* future data for channel channel_num
*/
chan = NULL;
retval = chan_cb(rig, &chan, chan_next, chan_list, arg);
if (retval != RIG_OK)
{
return retval;
}
if (chan == NULL)
{
return -RIG_ENOMEM;
}
SNPRINTF(aorcmd, sizeof(aorcmd), "MA%c" EOM,
priv->bank_base1);
for (i = 0; i < chan_count / LINES_PER_MA; i++)
{
retval = aor_transaction(rig, aorcmd, strlen(aorcmd), chanbuf, &chan_len);
if (retval != RIG_OK)
{
return retval;
}
for (j = 0; j < LINES_PER_MA; j++)
{
chan->vfo = RIG_VFO_MEM;
chan->channel_num = i * LINES_PER_MA + j;
retval = parse_chan_line(rig, chan, chanbuf, &chan_list[0].mem_caps);
if (retval == -RIG_ENAVAIL)
{
retval = RIG_OK;
}
if (retval != RIG_OK)
{
return retval;
}
/* notify the end? */
chan_next = chan_next < chan_list[i].endc ? chan_next + 1 : chan_next;
/*
* provide application with channel data,
* and ask for a new channel structure
*/
chan_cb(rig, &chan, chan_next, chan_list, arg);
if (j >= LINES_PER_MA - 1)
{
break;
}
/*
* get next line
*/
retval = read_string(&rig->state.rigport, (unsigned char *) chanbuf, BUFSZ,
EOM, strlen(EOM), 0,1);
if (retval < 0)
{
return retval;
}
}
SNPRINTF(aorcmd, sizeof(aorcmd), "MA" EOM);
}
return RIG_OK;
}
/*
* aor_get_info
* Assumes rig!=NULL
*/
const char *aor_get_info(RIG *rig)
{
static char infobuf[BUFSZ];
int id_len, frm_len, retval;
char idbuf[BUFSZ];
char frmbuf[32]; // only expect 6 chars...please check
retval = aor_transaction(rig, "\001" EOM, 2, idbuf, &id_len);
if (retval != RIG_OK)
{
return NULL;
}
if (retval > 2) { idbuf[2] = '\0'; }
retval = aor_transaction(rig, "VR" EOM, 3, frmbuf, &frm_len);
if (retval != RIG_OK || frm_len > 16)
{
return NULL;
}
frmbuf[frm_len] = '\0';
SNPRINTF(infobuf, sizeof(infobuf), "Remote ID %c%c, Firmware version %s",
idbuf[0], idbuf[1], frmbuf);
return infobuf;
}
/*
* initrigs_aor is called by rig_backend_load
*/
DECLARE_INITRIG_BACKEND(aor)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: _init called\n", __func__);
rig_register(&sr2200_caps);
rig_register(&ar2700_caps);
rig_register(&ar8200_caps);
rig_register(&ar8000_caps);
rig_register(&ar8600_caps);
rig_register(&ar5000_caps);
rig_register(&ar3000a_caps);
rig_register(&ar7030_caps);
rig_register(&ar3030_caps);
rig_register(&ar5000a_caps);
rig_register(&ar7030p_caps);
return RIG_OK;
}