Hamlib/rigs/dummy/dummy.c

2683 wiersze
65 KiB
C

/*
* Hamlib Dummy backend - main file
* Copyright (c) 2001-2010 by Stephane Fillod
* Copyright (c) 2010 by Nate Bargmann
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <hamlib/config.h>
// cppcheck-suppress *
#include <stdio.h>
// cppcheck-suppress *
#include <stdlib.h>
// cppcheck-suppress *
#include <string.h> /* String function definitions */
// cppcheck-suppress *
#include <unistd.h> /* UNIX standard function definitions */
// cppcheck-suppress *
#include <time.h>
#include "hamlib/rig.h"
#include "dummy_common.h"
#include "serial.h"
#include "parallel.h"
#include "cm108.h"
#include "gpio.h"
#include "misc.h"
#include "tones.h"
#include "idx_builtin.h"
#include "register.h"
#include "dummy.h"
#define NB_CHAN 22 /* see caps->chan_list */
#define CMDSLEEP 20*1000 /* ms for each command */
struct dummy_priv_data
{
/* current vfo already in rig_state ? */
vfo_t curr_vfo;
vfo_t last_vfo; /* VFO A or VFO B, when in MEM mode */
split_t split;
vfo_t tx_vfo;
ptt_t ptt;
powerstat_t powerstat;
int bank;
value_t parms[RIG_SETTING_MAX];
int ant_option[4]; /* simulate 4 antennas */
int trn; /* transceive */
channel_t *curr; /* points to vfo_a, vfo_b or mem[] */
// we're trying to emulate all sorts of vfo possibilities so this looks redundant
channel_t vfo_a;
channel_t vfo_b;
channel_t vfo_c;
channel_t vfo_maina;
channel_t vfo_mainb;
channel_t vfo_suba;
channel_t vfo_subb;
channel_t mem[NB_CHAN];
struct ext_list *ext_funcs;
struct ext_list *ext_parms;
char *magic_conf;
int static_data;
//freq_t freq_vfoa;
//freq_t freq_vfob;
};
/* levels pertain to each VFO */
static const struct confparams dummy_ext_levels[] =
{
{
TOK_EL_MAGICLEVEL, "MGL", "Magic level", "Magic level, as an example",
NULL, RIG_CONF_NUMERIC, { .n = { 0, 1, .001 } }
},
{
TOK_EL_MAGICFUNC, "MGF", "Magic func", "Magic function, as an example",
NULL, RIG_CONF_CHECKBUTTON
},
{
TOK_EL_MAGICOP, "MGO", "Magic Op", "Magic Op, as an example",
NULL, RIG_CONF_BUTTON
},
{
TOK_EL_MAGICCOMBO, "MGC", "Magic combo", "Magic combo, as an example",
"VALUE1", RIG_CONF_COMBO, { .c = { .combostr = { "VALUE1", "VALUE2", "NONE", NULL } } }
},
{ RIG_CONF_END, NULL, }
};
static const struct confparams dummy_ext_funcs[] =
{
{
TOK_EL_MAGICEXTFUNC, "MGEF", "Magic ext func", "Magic ext function, as an example",
NULL, RIG_CONF_CHECKBUTTON
},
{ RIG_CONF_END, NULL, }
};
/* parms pertain to the whole rig */
static const struct confparams dummy_ext_parms[] =
{
{
TOK_EP_MAGICPARM, "MGP", "Magic parm", "Magic parameter, as an example",
NULL, RIG_CONF_NUMERIC, { .n = { 0, 1, .001 } }
},
{ RIG_CONF_END, NULL, }
};
/* cfgparams are configuration item generally used by the backend's open() method */
static const struct confparams dummy_cfg_params[] =
{
{
TOK_CFG_MAGICCONF, "mcfg", "Magic conf", "Magic parameter, as an example",
"DX", RIG_CONF_STRING, { }
},
{
TOK_CFG_STATIC_DATA, "static_data", "Static data", "Output only static data, no randomization of meter values",
"0", RIG_CONF_CHECKBUTTON, { }
},
{ RIG_CONF_END, NULL, }
};
/********************************************************************/
static void init_chan(RIG *rig, vfo_t vfo, channel_t *chan)
{
chan->channel_num = 0;
chan->vfo = vfo;
strcpy(chan->channel_desc, rig_strvfo(vfo));
switch (vfo)
{
case RIG_VFO_A:
case RIG_VFO_MAIN_A:
chan->freq = MHz(145);
break;
case RIG_VFO_B:
case RIG_VFO_MAIN_B:
chan->freq = MHz(146);
break;
case RIG_VFO_SUB_A:
chan->freq = MHz(147);
break;
case RIG_VFO_SUB_B:
chan->freq = MHz(148);
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s(%d) unknown vfo=%s\n", __FILE__, __LINE__,
rig_strvfo(vfo));
}
chan->mode = RIG_MODE_FM;
chan->width = rig_passband_normal(rig, RIG_MODE_FM);
chan->tx_freq = chan->freq;
chan->tx_mode = chan->mode;
chan->tx_width = chan->width;
chan->split = RIG_SPLIT_OFF;
chan->tx_vfo = vfo;
chan->rptr_shift = RIG_RPT_SHIFT_NONE;
chan->rptr_offs = 0;
chan->ctcss_tone = 0;
chan->dcs_code = 0;
chan->ctcss_sql = 0;
chan->dcs_sql = 0;
chan->rit = 0;
chan->xit = 0;
chan->tuning_step = 0;
chan->ant = 0;
chan->funcs = (setting_t)0;
memset(chan->levels, 0, RIG_SETTING_MAX * sizeof(value_t));
}
static void copy_chan(channel_t *dest, const channel_t *src)
{
struct ext_list *saved_ext_levels;
int i;
/* TODO: ext_levels[] of different sizes */
for (i = 0; !RIG_IS_EXT_END(src->ext_levels[i]) &&
!RIG_IS_EXT_END(dest->ext_levels[i]); i++)
{
dest->ext_levels[i] = src->ext_levels[i];
}
saved_ext_levels = dest->ext_levels;
memcpy(dest, src, sizeof(channel_t));
dest->ext_levels = saved_ext_levels;
}
static int dummy_init(RIG *rig)
{
struct dummy_priv_data *priv;
int i;
ENTERFUNC;
priv = (struct dummy_priv_data *)calloc(1, sizeof(struct dummy_priv_data));
if (!priv)
{
RETURNFUNC(-RIG_ENOMEM);
}
rig->state.priv = (void *)priv;
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
rig->state.rigport.type.rig = RIG_PORT_NONE;
priv->split = RIG_SPLIT_OFF;
priv->ptt = RIG_PTT_OFF;
priv->powerstat = RIG_POWER_ON;
rig->state.powerstat = priv->powerstat;
priv->bank = 0;
memset(priv->parms, 0, RIG_SETTING_MAX * sizeof(value_t));
memset(priv->mem, 0, sizeof(priv->mem));
for (i = 0; i < NB_CHAN; i++)
{
priv->mem[i].channel_num = i;
priv->mem[i].vfo = RIG_VFO_MEM;
priv->mem[i].ext_levels = alloc_init_ext(dummy_ext_levels);
if (!priv->mem[i].ext_levels)
{
RETURNFUNC(-RIG_ENOMEM);
}
}
priv->vfo_a.ext_levels = alloc_init_ext(dummy_ext_levels);
if (!priv->vfo_a.ext_levels)
{
RETURNFUNC(-RIG_ENOMEM);
}
priv->vfo_b.ext_levels = alloc_init_ext(dummy_ext_levels);
if (!priv->vfo_b.ext_levels)
{
RETURNFUNC(-RIG_ENOMEM);
}
priv->ext_funcs = alloc_init_ext(dummy_ext_funcs);
if (!priv->ext_funcs)
{
RETURNFUNC(-RIG_ENOMEM);
}
priv->ext_parms = alloc_init_ext(dummy_ext_parms);
if (!priv->ext_parms)
{
RETURNFUNC(-RIG_ENOMEM);
}
init_chan(rig, RIG_VFO_A, &priv->vfo_a);
init_chan(rig, RIG_VFO_B, &priv->vfo_b);
init_chan(rig, RIG_VFO_MAIN_A, &priv->vfo_maina);
init_chan(rig, RIG_VFO_MAIN_B, &priv->vfo_mainb);
init_chan(rig, RIG_VFO_SUB_A, &priv->vfo_suba);
init_chan(rig, RIG_VFO_SUB_B, &priv->vfo_subb);
priv->curr = &priv->vfo_a;
if (rig->caps->rig_model == RIG_MODEL_DUMMY_NOVFO)
{
priv->curr_vfo = priv->last_vfo = RIG_VFO_CURR;
}
else
{
priv->curr_vfo = priv->last_vfo = RIG_VFO_A;
}
priv->magic_conf = strdup("DX");
RETURNFUNC(RIG_OK);
}
static int dummy_cleanup(RIG *rig)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
int i;
ENTERFUNC;
for (i = 0; i < NB_CHAN; i++)
{
free(priv->mem[i].ext_levels);
}
free(priv->vfo_a.ext_levels);
free(priv->vfo_b.ext_levels);
free(priv->ext_funcs);
free(priv->ext_parms);
free(priv->magic_conf);
if (rig->state.priv)
{
free(rig->state.priv);
}
rig->state.priv = NULL;
RETURNFUNC(RIG_OK);
}
static int dummy_open(RIG *rig)
{
ENTERFUNC;
if (rig->caps->rig_model == RIG_MODEL_DUMMY_NOVFO)
{
// then we emulate a rig without set_vfo or get_vfo
rig_debug(RIG_DEBUG_VERBOSE, "%s: Emulating rig without get_vfo or set_vfo\n",
__func__);
rig->caps->set_vfo = NULL;
rig->caps->get_vfo = NULL;
}
usleep(CMDSLEEP);
RETURNFUNC(RIG_OK);
}
static int dummy_close(RIG *rig)
{
ENTERFUNC;
usleep(CMDSLEEP);
RETURNFUNC(RIG_OK);
}
static int dummy_set_conf(RIG *rig, token_t token, const char *val)
{
struct dummy_priv_data *priv;
ENTERFUNC;
priv = (struct dummy_priv_data *)rig->state.priv;
switch (token)
{
case TOK_CFG_MAGICCONF:
if (val)
{
free(priv->magic_conf);
priv->magic_conf = strdup(val);
}
break;
case TOK_CFG_STATIC_DATA:
priv->static_data = atoi(val) ? 1 : 0;
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(RIG_OK);
}
static int dummy_get_conf(RIG *rig, token_t token, char *val)
{
struct dummy_priv_data *priv;
ENTERFUNC;
priv = (struct dummy_priv_data *)rig->state.priv;
switch (token)
{
case TOK_CFG_MAGICCONF:
strcpy(val, priv->magic_conf);
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(RIG_OK);
}
static int dummy_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
char fstr[20];
ENTERFUNC;
if (rig == NULL)
{
rig_debug(RIG_DEBUG_ERR, "%s: rig is NULL!!!\n", __func__);
return -RIG_EINVAL;
}
if (vfo == RIG_VFO_CURR) { vfo = priv->curr_vfo; }
if (vfo == RIG_VFO_CURR || vfo == RIG_VFO_TX) { vfo = vfo_fixup(rig, vfo, rig->state.cache.split); }
// if needed for testing enable this to emulate a rig with 100hz resolution
#if 0
// we emulate a rig with 100Hz set freq interval limits -- truncation
freq = freq - fmod(freq, 100);
#endif
usleep(CMDSLEEP);
sprintf_freq(fstr, sizeof(fstr), freq);
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %s\n", __func__,
rig_strvfo(vfo), fstr);
switch (vfo)
{
case RIG_VFO_MAIN:
case RIG_VFO_A: priv->vfo_a.freq = freq; break;
case RIG_VFO_MAIN_A: priv->vfo_maina.freq = freq; break;
case RIG_VFO_MAIN_B: priv->vfo_mainb.freq = freq; break;
case RIG_VFO_SUB:
case RIG_VFO_B: priv->vfo_b.freq = freq; break;
case RIG_VFO_SUB_A: priv->vfo_suba.freq = freq; break;
case RIG_VFO_SUB_B: priv->vfo_subb.freq = freq; break;
case RIG_VFO_C: priv->vfo_c.freq = freq; break;
}
if (priv && !priv->split)
{
priv->curr->tx_freq = freq;
}
rig_debug(RIG_DEBUG_TRACE, "%s: curr->freq=%.0f, curr->tx_freq=%.0f\n",
__func__,
priv->curr->freq, priv->curr->tx_freq);
RETURNFUNC(RIG_OK);
}
static int dummy_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
if (vfo == RIG_VFO_CURR && rig->caps->rig_model != RIG_MODEL_DUMMY_NOVFO) { vfo = priv->curr_vfo; }
if ((vfo == RIG_VFO_SUB && rig->state.uplink == 1)
|| (vfo == RIG_VFO_MAIN && rig->state.uplink == 2))
{
rig_debug(RIG_DEBUG_TRACE, "%s: uplink=%d, ignoring get_freq\n", __func__,
rig->state.uplink);
RETURNFUNC(RIG_OK);
}
usleep(CMDSLEEP);
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__, rig_strvfo(vfo));
switch (vfo)
{
case RIG_VFO_MAIN:
case RIG_VFO_A: *freq = priv->vfo_a.freq; break;
case RIG_VFO_MAIN_A: *freq = priv->vfo_maina.freq; break;
case RIG_VFO_MAIN_B: *freq = priv->vfo_mainb.freq; break;
case RIG_VFO_SUB:
case RIG_VFO_B: *freq = priv->vfo_b.freq; break;
case RIG_VFO_SUB_A: *freq = priv->vfo_suba.freq; break;
case RIG_VFO_SUB_B: *freq = priv->vfo_subb.freq; break;
case RIG_VFO_C: *freq = priv->vfo_c.freq; break;
default: RETURNFUNC(-RIG_EINVAL);
}
rig_debug(RIG_DEBUG_TRACE, "%s: freq=%.0f\n", __func__, *freq);
RETURNFUNC(RIG_OK);
}
static int dummy_set_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
char buf[16];
ENTERFUNC;
usleep(CMDSLEEP);
sprintf_freq(buf, sizeof(buf), width);
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %s %s\n", __func__,
rig_strvfo(vfo), rig_strrmode(mode), buf);
vfo = vfo_fixup(rig, vfo, rig->state.cache.split);
if (width == RIG_PASSBAND_NOCHANGE)
{
switch (vfo)
{
case RIG_VFO_MAIN:
case RIG_VFO_A: width = priv->vfo_a.width; break;
case RIG_VFO_SUB:
case RIG_VFO_B: width = priv->vfo_b.width; break;
case RIG_VFO_C: width = priv->vfo_c.width; break;
}
}
switch (vfo)
{
case RIG_VFO_MAIN:
case RIG_VFO_A: priv->vfo_a.mode = mode; priv->vfo_a.width = width; break;
case RIG_VFO_SUB:
case RIG_VFO_B: priv->vfo_b.mode = mode; priv->vfo_b.width = width; break;
case RIG_VFO_C: priv->vfo_c.mode = mode; priv->vfo_c.width = width; break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unknown VFO=%s\n", __func__, rig_strvfo(vfo));
RETURNFUNC(-RIG_EINVAL);
}
vfo = vfo_fixup(rig, vfo, rig->state.cache.split);
if (RIG_PASSBAND_NOCHANGE == width) { RETURNFUNC(RIG_OK); }
if (width == RIG_PASSBAND_NORMAL)
{
width = curr->width = rig_passband_normal(rig, mode);
}
switch (vfo)
{
case RIG_VFO_A: priv->vfo_a.width = width; break;
case RIG_VFO_B: priv->vfo_b.width = width; break;
case RIG_VFO_C: priv->vfo_c.width = width; break;
}
RETURNFUNC(RIG_OK);
}
static int dummy_get_mode(RIG *rig, vfo_t vfo, rmode_t *mode, pbwidth_t *width)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
usleep(CMDSLEEP);
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__, rig_strvfo(vfo));
if (vfo == RIG_VFO_CURR) { vfo = rig->state.current_vfo; }
switch (vfo)
{
case RIG_VFO_MAIN:
case RIG_VFO_A: *mode = priv->vfo_a.mode; *width = priv->vfo_a.width; break;
case RIG_VFO_SUB:
case RIG_VFO_B: *mode = priv->vfo_b.mode; *width = priv->vfo_b.width; break;
case RIG_VFO_C: *mode = priv->vfo_c.mode; *width = priv->vfo_c.width; break;
}
RETURNFUNC(RIG_OK);
}
static int dummy_set_vfo(RIG *rig, vfo_t vfo)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__, rig_strvfo(vfo));
if (vfo == RIG_VFO_CURR) { vfo = rig->state.current_vfo; }
priv->last_vfo = priv->curr_vfo;
priv->curr_vfo = vfo;
switch (vfo)
{
case RIG_VFO_VFO: /* FIXME */
case RIG_VFO_RX:
case RIG_VFO_MAIN: priv->curr = &priv->vfo_a; break;
case RIG_VFO_MAIN_A: priv->curr = &priv->vfo_maina; break;
case RIG_VFO_MAIN_B: priv->curr = &priv->vfo_mainb; break;
case RIG_VFO_A: priv->curr = &priv->vfo_a; break;
case RIG_VFO_SUB: priv->curr = &priv->vfo_b; break;
case RIG_VFO_SUB_A: priv->curr = &priv->vfo_suba; break;
case RIG_VFO_SUB_B: priv->curr = &priv->vfo_subb; break;
case RIG_VFO_B: priv->curr = &priv->vfo_b; break;
case RIG_VFO_C: priv->curr = &priv->vfo_c; break;
case RIG_VFO_MEM:
if (curr->channel_num >= 0 && curr->channel_num < NB_CHAN)
{
priv->curr = &priv->mem[curr->channel_num];
break;
}
case RIG_VFO_TX:
if (priv->tx_vfo == RIG_VFO_A) { priv->curr = &priv->vfo_a; }
else if (priv->tx_vfo == RIG_VFO_B) { priv->curr = &priv->vfo_b; }
else if (priv->tx_vfo == RIG_VFO_MEM) { priv->curr = &priv->mem[curr->channel_num]; }
else { priv->curr = &priv->vfo_a; }
break;
default:
rig_debug(RIG_DEBUG_VERBOSE, "%s unknown vfo: %s\n", __func__,
rig_strvfo(vfo));
RETURNFUNC(-RIG_EINVAL);
}
rig->state.current_vfo = vfo;
RETURNFUNC(RIG_OK);
}
static int dummy_get_vfo(RIG *rig, vfo_t *vfo)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
usleep(CMDSLEEP);
*vfo = priv->curr_vfo;
RETURNFUNC(RIG_OK);
}
static int dummy_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
priv->ptt = ptt;
RETURNFUNC(RIG_OK);
}
static int dummy_get_ptt(RIG *rig, vfo_t vfo, ptt_t *ptt)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
int rc;
int status = 0;
ENTERFUNC;
usleep(CMDSLEEP);
// sneak a look at the hardware PTT and OR that in with our result
// as if it had keyed us
switch (rig->state.pttport.type.ptt)
{
case RIG_PTT_SERIAL_DTR:
if (rig->state.pttport.fd >= 0)
{
if (RIG_OK != (rc = ser_get_dtr(&rig->state.pttport, &status))) { RETURNFUNC(rc); }
*ptt = status ? RIG_PTT_ON : RIG_PTT_OFF;
}
else
{
*ptt = RIG_PTT_OFF;
}
break;
case RIG_PTT_SERIAL_RTS:
if (rig->state.pttport.fd >= 0)
{
if (RIG_OK != (rc = ser_get_rts(&rig->state.pttport, &status))) { RETURNFUNC(rc); }
*ptt = status ? RIG_PTT_ON : RIG_PTT_OFF;
}
else
{
*ptt = RIG_PTT_OFF;
}
break;
case RIG_PTT_PARALLEL:
if (rig->state.pttport.fd >= 0)
{
if (RIG_OK != (rc = par_ptt_get(&rig->state.pttport, ptt))) { RETURNFUNC(rc); }
}
break;
case RIG_PTT_CM108:
if (rig->state.pttport.fd >= 0)
{
if (RIG_OK != (rc = cm108_ptt_get(&rig->state.pttport, ptt))) { RETURNFUNC(rc); }
}
break;
case RIG_PTT_GPIO:
case RIG_PTT_GPION:
if (rig->state.pttport.fd >= 0)
{
if (RIG_OK != (rc = gpio_ptt_get(&rig->state.pttport, ptt))) { RETURNFUNC(rc); }
}
break;
default:
*ptt = priv->ptt;
break;
}
RETURNFUNC(RIG_OK);
}
static int dummy_get_dcd(RIG *rig, vfo_t vfo, dcd_t *dcd)
{
static int twiddle = 0;
ENTERFUNC;
usleep(CMDSLEEP);
*dcd = (twiddle++ & 1) ? RIG_DCD_ON : RIG_DCD_OFF;
RETURNFUNC(RIG_OK);
}
static int dummy_set_rptr_shift(RIG *rig, vfo_t vfo, rptr_shift_t rptr_shift)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
curr->rptr_shift = rptr_shift;
RETURNFUNC(RIG_OK);
}
static int dummy_get_rptr_shift(RIG *rig, vfo_t vfo, rptr_shift_t *rptr_shift)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
*rptr_shift = curr->rptr_shift;
RETURNFUNC(RIG_OK);
}
static int dummy_set_rptr_offs(RIG *rig, vfo_t vfo, shortfreq_t rptr_offs)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
curr->rptr_offs = rptr_offs;
RETURNFUNC(RIG_OK);
}
static int dummy_get_rptr_offs(RIG *rig, vfo_t vfo, shortfreq_t *rptr_offs)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*rptr_offs = curr->rptr_offs;
RETURNFUNC(RIG_OK);
}
static int dummy_set_ctcss_tone(RIG *rig, vfo_t vfo, tone_t tone)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
curr->ctcss_tone = tone;
RETURNFUNC(RIG_OK);
}
static int dummy_get_ctcss_tone(RIG *rig, vfo_t vfo, tone_t *tone)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
*tone = curr->ctcss_tone;
RETURNFUNC(RIG_OK);
}
static int dummy_set_dcs_code(RIG *rig, vfo_t vfo, tone_t code)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
curr->dcs_code = code;
RETURNFUNC(RIG_OK);
}
static int dummy_get_dcs_code(RIG *rig, vfo_t vfo, tone_t *code)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
*code = curr->dcs_code;
RETURNFUNC(RIG_OK);
}
static int dummy_set_ctcss_sql(RIG *rig, vfo_t vfo, tone_t tone)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
usleep(CMDSLEEP);
curr->ctcss_sql = tone;
RETURNFUNC(RIG_OK);
}
static int dummy_get_ctcss_sql(RIG *rig, vfo_t vfo, tone_t *tone)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*tone = curr->ctcss_sql;
RETURNFUNC(RIG_OK);
}
static int dummy_set_dcs_sql(RIG *rig, vfo_t vfo, unsigned int code)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
curr->dcs_sql = code;
RETURNFUNC(RIG_OK);
}
static int dummy_get_dcs_sql(RIG *rig, vfo_t vfo, unsigned int *code)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*code = curr->dcs_sql;
RETURNFUNC(RIG_OK);
}
static int dummy_set_split_freq(RIG *rig, vfo_t vfo, freq_t tx_freq)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
int retval;
ENTERFUNC;
retval = dummy_set_freq(rig, vfo, tx_freq);
priv->curr->tx_freq = tx_freq;
rig_debug(RIG_DEBUG_VERBOSE, "%s: priv->curr->tx_freq = %.0f\n", __func__,
priv->curr->tx_freq);
RETURNFUNC(retval);
}
static int dummy_get_split_freq(RIG *rig, vfo_t vfo, freq_t *tx_freq)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
*tx_freq = priv->curr->tx_freq;
rig_debug(RIG_DEBUG_VERBOSE, "%s: priv->curr->tx_freq = %.0f\n", __func__,
priv->curr->tx_freq);
RETURNFUNC(RIG_OK);
}
static int dummy_set_split_mode(RIG *rig, vfo_t vfo, rmode_t tx_mode,
pbwidth_t tx_width)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
curr->tx_mode = tx_mode;
if (RIG_PASSBAND_NOCHANGE == tx_width) { RETURNFUNC(RIG_OK); }
curr->tx_width = tx_width;
RETURNFUNC(RIG_OK);
}
static int dummy_get_split_mode(RIG *rig, vfo_t vfo, rmode_t *tx_mode,
pbwidth_t *tx_width)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*tx_mode = curr->tx_mode;
*tx_width = curr->tx_width;
RETURNFUNC(RIG_OK);
}
static int dummy_set_split_vfo(RIG *rig, vfo_t vfo, split_t split, vfo_t tx_vfo)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
rig_debug(RIG_DEBUG_VERBOSE, "%s: split=%d, vfo=%s, tx_vfo=%s\n",
__func__, split, rig_strvfo(vfo), rig_strvfo(tx_vfo));
curr->split = split;
priv->tx_vfo = tx_vfo;
RETURNFUNC(RIG_OK);
}
static int dummy_get_split_vfo(RIG *rig, vfo_t vfo, split_t *split,
vfo_t *tx_vfo)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*split = curr->split;
RETURNFUNC(RIG_OK);
}
static int dummy_set_rit(RIG *rig, vfo_t vfo, shortfreq_t rit)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
curr->rit = rit;
RETURNFUNC(RIG_OK);
}
static int dummy_get_rit(RIG *rig, vfo_t vfo, shortfreq_t *rit)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*rit = curr->rit;
RETURNFUNC(RIG_OK);
}
static int dummy_set_xit(RIG *rig, vfo_t vfo, shortfreq_t xit)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
curr->xit = xit;
RETURNFUNC(RIG_OK);
}
static int dummy_get_xit(RIG *rig, vfo_t vfo, shortfreq_t *xit)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*xit = curr->xit;
RETURNFUNC(RIG_OK);
}
static int dummy_set_ts(RIG *rig, vfo_t vfo, shortfreq_t ts)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
curr->tuning_step = ts;
RETURNFUNC(RIG_OK);
}
static int dummy_get_ts(RIG *rig, vfo_t vfo, shortfreq_t *ts)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*ts = curr->tuning_step;
RETURNFUNC(RIG_OK);
}
static int dummy_set_func(RIG *rig, vfo_t vfo, setting_t func, int status)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %d\n", __func__,
rig_strfunc(func), status);
if (status)
{
curr->funcs |= func;
}
else
{
curr->funcs &= ~func;
}
RETURNFUNC(RIG_OK);
}
static int dummy_get_func(RIG *rig, vfo_t vfo, setting_t func, int *status)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*status = (curr->funcs & func) ? 1 : 0;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__,
rig_strfunc(func));
RETURNFUNC(RIG_OK);
}
static int dummy_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
int idx;
char lstr[32];
ENTERFUNC;
idx = rig_setting2idx(level);
if (idx >= RIG_SETTING_MAX)
{
RETURNFUNC(-RIG_EINVAL);
}
curr->levels[idx] = val;
if (RIG_LEVEL_IS_FLOAT(level))
{
SNPRINTF(lstr, sizeof(lstr), "%f", val.f);
}
else
{
SNPRINTF(lstr, sizeof(lstr), "%d", val.i);
}
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %s\n", __func__,
rig_strlevel(level), lstr);
RETURNFUNC(RIG_OK);
}
static int dummy_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
int idx;
ENTERFUNC;
idx = rig_setting2idx(level);
if (idx >= RIG_SETTING_MAX)
{
RETURNFUNC(-RIG_EINVAL);
}
switch (level)
{
case RIG_LEVEL_STRENGTH:
case RIG_LEVEL_RAWSTR:
if (priv->static_data)
{
curr->levels[idx].i = -12;
}
else
{
uint64_t level1, level2;
/* make S-Meter jiggle */
int qrm = -56;
if (curr->freq < MHz(7))
{
qrm = -20;
}
else if (curr->freq < MHz(21))
{
qrm = -30;
}
else if (curr->freq < MHz(50))
{
qrm = -50;
}
// cppcheck-suppress *
level1 = LVL_ATT;
level2 = LVL_PREAMP;
curr->levels[idx].i = qrm + (time(NULL) % 32) + (rand() % 4)
- curr->levels[level1].i + curr->levels[level2].i;
}
break;
case RIG_LEVEL_RFPOWER_METER:
if (priv->static_data)
{
curr->levels[idx].f = 0.5f;
}
else
{
curr->levels[idx].f = (float)(time(NULL) % 32) / 64.0f + (float)(
rand() % 4) / 8.0f;
}
break;
case RIG_LEVEL_RFPOWER_METER_WATTS:
if (priv->static_data)
{
curr->levels[idx].f = 50.0f;
}
else
{
curr->levels[idx].f = (float)(time(NULL) % 32) / 64.0f + (float)(
rand() % 4) / 8.0f;
curr->levels[idx].f *= 100.0f;
}
break;
case RIG_LEVEL_COMP_METER:
if (priv->static_data)
{
curr->levels[idx].f = 3.5f;
}
else
{
curr->levels[idx].f = 0.5f + (float)(time(NULL) % 32) / 16.0f + (float)(
rand() % 200) / 20.0f;
}
break;
case RIG_LEVEL_VD_METER:
if (priv->static_data)
{
curr->levels[idx].f = 13.82f;
}
else
{
curr->levels[idx].f = 13.82f + (float)(time(NULL) % 10) / 50.0f - (float)(
rand() % 10) / 40.0f;
}
break;
case RIG_LEVEL_ID_METER:
if (priv->static_data)
{
curr->levels[idx].f = 0.85f;
}
else
{
curr->levels[idx].f = 2.0f + (float)(time(NULL) % 320) / 16.0f - (float)(
rand() % 40) / 20.0f;
}
break;
}
memcpy(val, &curr->levels[idx], sizeof(value_t));
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__,
rig_strlevel(level));
RETURNFUNC(RIG_OK);
}
static int dummy_set_ext_level(RIG *rig, vfo_t vfo, token_t token, value_t val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
char lstr[64];
const struct confparams *cfp;
struct ext_list *elp;
ENTERFUNC;
cfp = rig_ext_lookup_tok(rig, token);
if (!cfp)
{
RETURNFUNC(-RIG_EINVAL);
}
switch (token)
{
case TOK_EL_MAGICLEVEL:
case TOK_EL_MAGICFUNC:
case TOK_EL_MAGICOP:
case TOK_EL_MAGICCOMBO:
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
switch (cfp->type)
{
case RIG_CONF_STRING:
strcpy(lstr, val.s);
break;
case RIG_CONF_COMBO:
SNPRINTF(lstr, sizeof(lstr), "%d", val.i);
break;
case RIG_CONF_NUMERIC:
SNPRINTF(lstr, sizeof(lstr), "%f", val.f);
break;
case RIG_CONF_CHECKBUTTON:
SNPRINTF(lstr, sizeof(lstr), "%s", val.i ? "ON" : "OFF");
break;
case RIG_CONF_BUTTON:
lstr[0] = '\0';
break;
default:
RETURNFUNC(-RIG_EINTERNAL);
}
elp = find_ext(curr->ext_levels, token);
if (!elp)
{
RETURNFUNC(-RIG_EINTERNAL);
}
/* store value */
elp->val = val;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %s\n", __func__,
cfp->name, lstr);
RETURNFUNC(RIG_OK);
}
static int dummy_get_ext_level(RIG *rig, vfo_t vfo, token_t token, value_t *val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
const struct confparams *cfp;
struct ext_list *elp;
ENTERFUNC;
cfp = rig_ext_lookup_tok(rig, token);
if (!cfp)
{
RETURNFUNC(-RIG_EINVAL);
}
switch (token)
{
case TOK_EL_MAGICLEVEL:
case TOK_EL_MAGICFUNC:
case TOK_EL_MAGICOP:
case TOK_EL_MAGICCOMBO:
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
elp = find_ext(curr->ext_levels, token);
if (!elp)
{
RETURNFUNC(-RIG_EINTERNAL);
}
/* load value */
*val = elp->val;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__,
cfp->name);
RETURNFUNC(RIG_OK);
}
static int dummy_set_ext_func(RIG *rig, vfo_t vfo, token_t token, int status)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
const struct confparams *cfp;
struct ext_list *elp;
ENTERFUNC;
cfp = rig_ext_lookup_tok(rig, token);
if (!cfp)
{
RETURNFUNC(-RIG_EINVAL);
}
switch (token)
{
case TOK_EL_MAGICEXTFUNC:
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
switch (cfp->type)
{
case RIG_CONF_CHECKBUTTON:
break;
case RIG_CONF_BUTTON:
break;
default:
RETURNFUNC(-RIG_EINTERNAL);
}
elp = find_ext(priv->ext_funcs, token);
if (!elp)
{
RETURNFUNC(-RIG_EINTERNAL);
}
/* store value */
elp->val.i = status;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %d\n", __func__,
cfp->name, status);
RETURNFUNC(RIG_OK);
}
static int dummy_get_ext_func(RIG *rig, vfo_t vfo, token_t token, int *status)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
const struct confparams *cfp;
struct ext_list *elp;
ENTERFUNC;
cfp = rig_ext_lookup_tok(rig, token);
if (!cfp)
{
RETURNFUNC(-RIG_EINVAL);
}
switch (token)
{
case TOK_EL_MAGICEXTFUNC:
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
elp = find_ext(priv->ext_funcs, token);
if (!elp)
{
RETURNFUNC(-RIG_EINTERNAL);
}
/* load value */
*status = elp->val.i;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__,
cfp->name);
RETURNFUNC(RIG_OK);
}
static int dummy_set_powerstat(RIG *rig, powerstat_t status)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
priv->powerstat = status;
RETURNFUNC(RIG_OK);
}
static int dummy_get_powerstat(RIG *rig, powerstat_t *status)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
*status = priv->powerstat;
RETURNFUNC(RIG_OK);
}
static int dummy_set_parm(RIG *rig, setting_t parm, value_t val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
int idx;
char pstr[32];
ENTERFUNC;
idx = rig_setting2idx(parm);
if (idx >= RIG_SETTING_MAX)
{
RETURNFUNC(-RIG_EINVAL);
}
if (RIG_PARM_IS_FLOAT(parm))
{
SNPRINTF(pstr, sizeof(pstr), "%f", val.f);
}
else
{
SNPRINTF(pstr, sizeof(pstr), "%d", val.i);
}
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %s\n", __func__,
rig_strparm(parm), pstr);
priv->parms[idx] = val;
RETURNFUNC(RIG_OK);
}
static int dummy_get_parm(RIG *rig, setting_t parm, value_t *val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
int idx;
ENTERFUNC;
idx = rig_setting2idx(parm);
if (idx >= RIG_SETTING_MAX)
{
RETURNFUNC(-RIG_EINVAL);
}
*val = priv->parms[idx];
rig_debug(RIG_DEBUG_VERBOSE, "%s called %s\n", __func__,
rig_strparm(parm));
RETURNFUNC(RIG_OK);
}
static int dummy_set_ext_parm(RIG *rig, token_t token, value_t val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
char lstr[64];
const struct confparams *cfp;
struct ext_list *epp;
ENTERFUNC;
cfp = rig_ext_lookup_tok(rig, token);
if (!cfp)
{
RETURNFUNC(-RIG_EINVAL);
}
switch (token)
{
case TOK_EP_MAGICPARM:
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
switch (cfp->type)
{
case RIG_CONF_STRING:
strcpy(lstr, val.s);
break;
case RIG_CONF_COMBO:
SNPRINTF(lstr, sizeof(lstr), "%d", val.i);
break;
case RIG_CONF_NUMERIC:
SNPRINTF(lstr, sizeof(lstr), "%f", val.f);
break;
case RIG_CONF_CHECKBUTTON:
SNPRINTF(lstr, sizeof(lstr), "%s", val.i ? "ON" : "OFF");
break;
case RIG_CONF_BUTTON:
lstr[0] = '\0';
break;
default:
RETURNFUNC(-RIG_EINTERNAL);
}
epp = find_ext(priv->ext_parms, token);
if (!epp)
{
RETURNFUNC(-RIG_EINTERNAL);
}
/* store value */
epp->val = val;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %s\n", __func__,
cfp->name, lstr);
RETURNFUNC(RIG_OK);
}
static int dummy_get_ext_parm(RIG *rig, token_t token, value_t *val)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
const struct confparams *cfp;
struct ext_list *epp;
ENTERFUNC;
/* TODO: load value from priv->ext_parms */
cfp = rig_ext_lookup_tok(rig, token);
if (!cfp)
{
RETURNFUNC(-RIG_EINVAL);
}
switch (token)
{
case TOK_EP_MAGICPARM:
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
epp = find_ext(priv->ext_parms, token);
if (!epp)
{
RETURNFUNC(-RIG_EINTERNAL);
}
/* load value */
*val = epp->val;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__,
cfp->name);
RETURNFUNC(RIG_OK);
}
static int dummy_set_ant(RIG *rig, vfo_t vfo, ant_t ant, value_t option)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
switch (ant)
{
case RIG_ANT_CURR:
break;
case RIG_ANT_1:
case RIG_ANT_2:
case RIG_ANT_3:
case RIG_ANT_4:
curr->ant = ant;
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unknown antenna requested=0x%02x\n", __func__,
ant);
RETURNFUNC(-RIG_EINVAL);
}
priv->ant_option[rig_setting2idx(curr->ant)] = option.i;
rig_debug(RIG_DEBUG_VERBOSE,
"%s called ant=0x%02x, option=%d, curr->ant=0x%02x\n", __func__, ant, option.i,
curr->ant);
RETURNFUNC(RIG_OK);
}
static int dummy_get_ant(RIG *rig, vfo_t vfo, ant_t ant, value_t *option,
ant_t *ant_curr, ant_t *ant_tx, ant_t *ant_rx)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
rig_debug(RIG_DEBUG_VERBOSE, "%s called, ant=0x%02x\n", __func__, ant);
switch (ant)
{
case RIG_ANT_CURR:
*ant_curr = curr->ant;
break;
case RIG_ANT_1:
case RIG_ANT_2:
case RIG_ANT_3:
case RIG_ANT_4:
*ant_curr = ant;
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unknown antenna requested=0x%02x\n", __func__,
ant);
RETURNFUNC(-RIG_EINVAL);
}
rig_debug(RIG_DEBUG_TRACE, "%s: ant_curr=0x%02x, idx=%d\n", __func__, *ant_curr,
rig_setting2idx(*ant_curr));
option->i = priv->ant_option[rig_setting2idx(*ant_curr)];
RETURNFUNC(RIG_OK);
}
static int dummy_set_bank(RIG *rig, vfo_t vfo, int bank)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
priv->bank = bank;
RETURNFUNC(RIG_OK);
}
static int dummy_set_mem(RIG *rig, vfo_t vfo, int ch)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
if (ch < 0 || ch >= NB_CHAN)
{
RETURNFUNC(-RIG_EINVAL);
}
if (priv->curr_vfo == RIG_VFO_MEM)
{
priv->curr = &priv->mem[ch];
}
else
{
priv->curr->channel_num = ch;
}
RETURNFUNC(RIG_OK);
}
static int dummy_get_mem(RIG *rig, vfo_t vfo, int *ch)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
ENTERFUNC;
*ch = curr->channel_num;
RETURNFUNC(RIG_OK);
}
static int dummy_scan(RIG *rig, vfo_t vfo, scan_t scan, int ch)
{
ENTERFUNC;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s %d\n", __func__,
rig_strscan(scan), ch);
/* TODO: change freq, etc. */
RETURNFUNC(RIG_OK);
}
static void chan_vfo(channel_t *chan, vfo_t vfo)
{
chan->vfo = vfo;
strcpy(chan->channel_desc, rig_strvfo(vfo));
}
static int dummy_vfo_op(RIG *rig, vfo_t vfo, vfo_op_t op)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
channel_t *curr = priv->curr;
int ret;
freq_t freq;
shortfreq_t ts;
ENTERFUNC;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__,
rig_strvfop(op));
switch (op)
{
case RIG_OP_FROM_VFO: /* VFO->MEM */
if (priv->curr_vfo == RIG_VFO_MEM)
{
int ch = curr->channel_num;
copy_chan(curr, priv->last_vfo == RIG_VFO_A ?
&priv->vfo_a : &priv->vfo_b);
curr->channel_num = ch;
curr->channel_desc[0] = '\0';
curr->vfo = RIG_VFO_MEM;
}
else
{
channel_t *mem_chan = &priv->mem[curr->channel_num];
copy_chan(mem_chan, curr);
mem_chan->channel_num = curr->channel_num;
mem_chan->channel_desc[0] = '\0';
mem_chan->vfo = RIG_VFO_MEM;
}
break;
case RIG_OP_TO_VFO: /* MEM->VFO */
if (priv->curr_vfo == RIG_VFO_MEM)
{
channel_t *vfo_chan = (priv->last_vfo == RIG_VFO_A) ?
&priv->vfo_a : &priv->vfo_b;
copy_chan(vfo_chan, curr);
chan_vfo(vfo_chan, priv->last_vfo);
}
else
{
copy_chan(&priv->mem[curr->channel_num], curr);
chan_vfo(curr, priv->curr_vfo);
}
break;
case RIG_OP_CPY: /* VFO A = VFO B or VFO B = VFO A */
if (priv->curr_vfo == RIG_VFO_A)
{
copy_chan(&priv->vfo_b, &priv->vfo_a);
chan_vfo(&priv->vfo_b, RIG_VFO_B);
break;
}
else if (priv->curr_vfo == RIG_VFO_B)
{
copy_chan(&priv->vfo_a, &priv->vfo_b);
chan_vfo(&priv->vfo_a, RIG_VFO_A);
break;
}
rig_debug(RIG_DEBUG_VERBOSE, "%s beep!\n", __func__);
break;
case RIG_OP_XCHG: /* Exchange VFO A/B */
{
channel_t chan;
chan.ext_levels = alloc_init_ext(dummy_ext_levels);
if (!chan.ext_levels)
{
RETURNFUNC(-RIG_ENOMEM);
}
copy_chan(&chan, &priv->vfo_b);
copy_chan(&priv->vfo_b, &priv->vfo_a);
copy_chan(&priv->vfo_a, &chan);
chan_vfo(&priv->vfo_a, RIG_VFO_A);
chan_vfo(&priv->vfo_b, RIG_VFO_B);
free(chan.ext_levels);
break;
}
case RIG_OP_MCL: /* Memory clear */
if (priv->curr_vfo == RIG_VFO_MEM)
{
struct ext_list *saved_ext_levels = curr->ext_levels;
int saved_ch = curr->channel_num;
int i;
for (i = 0; !RIG_IS_EXT_END(curr->ext_levels[i]); i++)
{
curr->ext_levels[i].val.i = 0;
}
memset(curr, 0, sizeof(channel_t));
curr->ext_levels = saved_ext_levels;
curr->channel_num = saved_ch;
curr->vfo = RIG_VFO_MEM;
}
else
{
struct ext_list *saved_ext_levels = curr->ext_levels;
channel_t *mem_chan = &priv->mem[curr->channel_num];
int i;
for (i = 0; !RIG_IS_EXT_END(mem_chan->ext_levels[i]); i++)
{
mem_chan->ext_levels[i].val.i = 0;
}
memset(mem_chan, 0, sizeof(channel_t));
mem_chan->ext_levels = saved_ext_levels;
mem_chan->channel_num = curr->channel_num;
mem_chan->vfo = RIG_VFO_MEM;
}
break;
case RIG_OP_TOGGLE:
if (priv->curr_vfo == RIG_VFO_A)
{
RETURNFUNC(dummy_set_vfo(rig, RIG_VFO_B));
}
else if (priv->curr_vfo == RIG_VFO_B)
{
RETURNFUNC(dummy_set_vfo(rig, RIG_VFO_A));
}
else
{
RETURNFUNC(-RIG_EVFO);
}
case RIG_OP_RIGHT:
case RIG_OP_LEFT:
case RIG_OP_TUNE:
/* NOP */
break;
case RIG_OP_BAND_UP:
case RIG_OP_BAND_DOWN:
RETURNFUNC(-RIG_ENIMPL);
case RIG_OP_UP:
ret = dummy_get_freq(rig, vfo, &freq);
if (!ret) { break; }
ret = dummy_get_ts(rig, vfo, &ts);
if (!ret) { break; }
dummy_set_freq(rig, vfo, freq + ts); /* up */
break;
case RIG_OP_DOWN:
ret = dummy_get_freq(rig, vfo, &freq);
if (!ret) { break; }
ret = dummy_get_ts(rig, vfo, &ts);
if (!ret) { break; }
dummy_set_freq(rig, vfo, freq - ts); /* down */
break;
default:
break;
}
RETURNFUNC(RIG_OK);
}
static int dummy_set_channel(RIG *rig, vfo_t vfo, const channel_t *chan)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
if (!chan->ext_levels)
{
RETURNFUNC(-RIG_EINVAL);
}
if (chan->channel_num < 0 || chan->channel_num >= NB_CHAN)
{
RETURNFUNC(-RIG_EINVAL);
}
/* TODO:
* - check ext_levels is the right length
*/
switch (chan->vfo)
{
case RIG_VFO_MEM:
copy_chan(&priv->mem[chan->channel_num], chan);
break;
case RIG_VFO_A:
copy_chan(&priv->vfo_a, chan);
break;
case RIG_VFO_B:
copy_chan(&priv->vfo_b, chan);
break;
case RIG_VFO_CURR:
copy_chan(priv->curr, chan);
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(RIG_OK);
}
static int dummy_get_channel(RIG *rig, vfo_t vfo, channel_t *chan,
int read_only)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
ENTERFUNC;
if (chan->channel_num < 0 || chan->channel_num >= NB_CHAN)
{
RETURNFUNC(-RIG_EINVAL);
}
if (!chan->ext_levels)
{
chan->ext_levels = alloc_init_ext(dummy_ext_levels);
if (!chan->ext_levels)
{
RETURNFUNC(-RIG_ENOMEM);
}
}
/* TODO:
* - check ext_levels is the right length
*/
switch (chan->vfo)
{
case RIG_VFO_MEM:
copy_chan(chan, &priv->mem[chan->channel_num]);
break;
case RIG_VFO_A:
copy_chan(chan, &priv->vfo_a);
break;
case RIG_VFO_B:
copy_chan(chan, &priv->vfo_b);
break;
case RIG_VFO_CURR:
copy_chan(chan, priv->curr);
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(RIG_OK);
}
static int dummy_set_trn(RIG *rig, int trn)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
priv->trn = trn;
RETURNFUNC2(RIG_OK);
}
static int dummy_get_trn(RIG *rig, int *trn)
{
struct dummy_priv_data *priv = (struct dummy_priv_data *)rig->state.priv;
*trn = priv->trn;
RETURNFUNC2(RIG_OK);
}
static const char *dummy_get_info(RIG *rig)
{
return "Nothing much (dummy)";
}
static int dummy_send_dtmf(RIG *rig, vfo_t vfo, const char *digits)
{
ENTERFUNC;
rig_debug(RIG_DEBUG_VERBOSE, "%s called: %s\n", __func__, digits);
RETURNFUNC(RIG_OK);
}
static int dummy_recv_dtmf(RIG *rig, vfo_t vfo, char *digits, int *length)
{
ENTERFUNC;
strcpy(digits, "0123456789ABCDEF");
*length = 16;
RETURNFUNC(RIG_OK);
}
static int dummy_send_morse(RIG *rig, vfo_t vfo, const char *msg)
{
ENTERFUNC;
RETURNFUNC(RIG_OK);
}
static int dummy_send_voice_mem(RIG *rig, vfo_t vfo, int ch)
{
ENTERFUNC;
RETURNFUNC(RIG_OK);
}
static int dummy_power2mW(RIG *rig, unsigned int *mwpower, float power,
freq_t freq, rmode_t mode)
{
ENTERFUNC;
rig_debug(RIG_DEBUG_TRACE, "%s: passed power = %f\n", __func__, power);
rig_debug(RIG_DEBUG_TRACE, "%s: passed freq = %"PRIfreq" Hz\n", __func__, freq);
rig_debug(RIG_DEBUG_TRACE, "%s: passed mode = %s\n", __func__,
rig_strrmode(mode));
/* Pretend this is a 100W radio */
*mwpower = (power * 100000);
RETURNFUNC(RIG_OK);
}
static int dummy_mW2power(RIG *rig, float *power, unsigned int mwpower,
freq_t freq, rmode_t mode)
{
ENTERFUNC;
rig_debug(RIG_DEBUG_TRACE, "%s: passed mwpower = %u\n", __func__, mwpower);
rig_debug(RIG_DEBUG_TRACE, "%s: passed freq = %"PRIfreq" Hz\n", __func__, freq);
rig_debug(RIG_DEBUG_TRACE, "%s: passed mode = %s\n", __func__,
rig_strrmode(mode));
/* Pretend this is a 100W radio */
if (mwpower > 100000)
{
RETURNFUNC(-RIG_EINVAL);
}
*power = ((float)mwpower / 100000);
RETURNFUNC(RIG_OK);
}
static int m_year, m_month, m_day, m_hour, m_min, m_sec, m_utc_offset;
static double m_msec;
int dummy_set_clock(RIG *rig, int year, int month, int day, int hour, int min,
int sec, double msec, int utc_offset)
{
int retval = RIG_OK;
rig_debug(RIG_DEBUG_VERBOSE, "%s: %04d-%02d-%02dT%02d:%02d:%02d.%.03f%s%02d\n",
__func__, year,
month, day, hour, min, sec, msec, utc_offset >= 0 ? "+" : "-",
(unsigned)(abs(utc_offset)));
m_year = year;
m_month = month;
m_day = day;
if (hour >= 0)
{
m_hour = hour;
m_min = min;
m_sec = sec;
m_msec = msec;
m_utc_offset = utc_offset;
}
return retval;
}
int dummy_get_clock(RIG *rig, int *year, int *month, int *day, int *hour,
int *min, int *sec, double *msec, int *utc_offset)
{
int retval = RIG_OK;
*year = m_year;
*month = m_month;
*day = m_day;
*hour = m_hour;
*min = m_min;
*sec = m_sec;
*msec = m_msec;
*utc_offset = m_utc_offset;
rig_debug(RIG_DEBUG_VERBOSE,
"%s: %02d-%02d-%02dT%02d:%02d:%02d:%0.3lf%s%02d\n'",
__func__, *year, *month, *day, *hour, *min, *sec, *msec,
*utc_offset >= 0 ? "+" : "-", (unsigned)abs(*utc_offset));
return retval;
}
/*
* Dummy rig capabilities.
*/
/*
* The following macros set bitmasks for the various funcs, levels, parms,
* etc. This dummy backend claims support for almost all of them.
*/
#define DUMMY_FUNC ((setting_t)-1ULL) /* All possible functions */
#define DUMMY_LEVEL (((setting_t)-1ULL)&~(1ULL<<27)) /* All levels except SQLSTAT */
#define DUMMY_PARM ((setting_t)-1ULL) /* All possible parms */
#define DUMMY_VFO_OP 0x7ffffffUL /* All possible VFO OPs */
#define DUMMY_SCAN 0x7ffffffUL /* All possible scan OPs */
#define DUMMY_VFOS (RIG_VFO_TX|RIG_VFO_TX|RIG_VFO_A|RIG_VFO_B|RIG_VFO_C|RIG_VFO_MEM|RIG_VFO_MAIN|RIG_VFO_SUB|RIG_VFO_MAIN_A|RIG_VFO_MAIN_B|RIG_VFO_SUB_A|RIG_VFO_SUB_B)
#define DUMMY_MODES (RIG_MODE_AM | RIG_MODE_CW | RIG_MODE_RTTY | \
RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_WFM | \
RIG_MODE_CWR | RIG_MODE_RTTYR)
#define DUMMY_MEM_CAP { \
.bank_num = 1, \
.vfo = 1, \
.ant = 1, \
.freq = 1, \
.mode = 1, \
.width = 1, \
.tx_freq = 1, \
.tx_mode = 1, \
.tx_width = 1, \
.split = 1, \
.rptr_shift = 1, \
.rptr_offs = 1, \
.tuning_step = 1, \
.rit = 1, \
.xit = 1, \
.funcs = DUMMY_FUNC, \
.levels = RIG_LEVEL_SET(DUMMY_LEVEL), \
.ctcss_tone = 1, \
.ctcss_sql = 1, \
.dcs_code = 1, \
.dcs_sql = 1, \
.scan_group = 1, \
.flags = 1, \
.channel_desc = 1, \
.ext_levels = 1, \
}
struct rig_caps dummy_caps =
{
RIG_MODEL(RIG_MODEL_DUMMY),
.model_name = "Dummy",
.mfg_name = "Hamlib",
.version = "20221128.0",
.copyright = "LGPL",
.status = RIG_STATUS_STABLE,
.rig_type = RIG_TYPE_OTHER,
.targetable_vfo = RIG_TARGETABLE_PTT | RIG_TARGETABLE_RITXIT | RIG_TARGETABLE_FREQ | RIG_TARGETABLE_MODE | RIG_TARGETABLE_SPECTRUM,
.ptt_type = RIG_PTT_NONE,
.dcd_type = RIG_DCD_RIG,
.port_type = RIG_PORT_NONE,
.has_get_func = DUMMY_FUNC,
.has_set_func = DUMMY_FUNC,
.has_get_level = DUMMY_LEVEL,
.has_set_level = RIG_LEVEL_SET(DUMMY_LEVEL),
.has_get_parm = DUMMY_PARM,
.has_set_parm = RIG_PARM_SET(DUMMY_PARM),
.level_gran = {
[LVL_CWPITCH] = { .step = { .i = 10 } },
[LVL_SPECTRUM_SPEED] = {.min = {.i = 0}, .max = {.i = 2}, .step = {.i = 1}},
[LVL_SPECTRUM_REF] = {.min = {.f = -30.0f}, .max = {.f = 10.0f}, .step = {.f = 0.5f}},
[LVL_SPECTRUM_AVG] = {.min = {.i = 0}, .max = {.i = 3}, .step = {.i = 1}},
},
.ctcss_list = common_ctcss_list,
.dcs_list = full_dcs_list,
.chan_list = {
{ 0, 18, RIG_MTYPE_MEM, DUMMY_MEM_CAP },
{ 19, 19, RIG_MTYPE_CALL },
{ 20, NB_CHAN - 1, RIG_MTYPE_EDGE },
RIG_CHAN_END,
},
.scan_ops = DUMMY_SCAN,
.vfo_ops = DUMMY_VFO_OP,
.transceive = RIG_TRN_OFF,
.attenuator = { 10, 20, 30, RIG_DBLST_END, },
.preamp = { 10, RIG_DBLST_END, },
.agc_level_count = 7,
.agc_levels = { RIG_AGC_OFF, RIG_AGC_SUPERFAST, RIG_AGC_FAST, RIG_AGC_MEDIUM, RIG_AGC_SLOW, RIG_AGC_AUTO, RIG_AGC_USER },
.rx_range_list1 = { {
.startf = kHz(150), .endf = MHz(1500), .modes = DUMMY_MODES,
.low_power = -1, .high_power = -1, DUMMY_VFOS, RIG_ANT_1 | RIG_ANT_2 | RIG_ANT_3 | RIG_ANT_4,
.label = "Dummy#1"
},
RIG_FRNG_END,
},
.tx_range_list1 = { {
.startf = kHz(150), .endf = MHz(1500), .modes = DUMMY_MODES,
.low_power = W(5), .high_power = W(100), DUMMY_VFOS, RIG_ANT_1 | RIG_ANT_2 | RIG_ANT_3 | RIG_ANT_4,
.label = "Dummy#1"
},
RIG_FRNG_END,
},
.rx_range_list2 = { {
.startf = kHz(150), .endf = MHz(1500), .modes = DUMMY_MODES,
.low_power = -1, .high_power = -1, DUMMY_VFOS, RIG_ANT_1 | RIG_ANT_2 | RIG_ANT_3 | RIG_ANT_4,
.label = "Dummy#2"
},
RIG_FRNG_END,
},
.tx_range_list2 = { RIG_FRNG_END, },
.tuning_steps = { {DUMMY_MODES, 1}, {DUMMY_MODES, RIG_TS_ANY}, RIG_TS_END, },
.filters = {
{RIG_MODE_SSB, kHz(2.4)},
{RIG_MODE_SSB, kHz(1.8)},
{RIG_MODE_SSB, kHz(3.0)},
{RIG_MODE_SSB, RIG_FLT_ANY},
{RIG_MODE_CW, Hz(500)},
{RIG_MODE_CW, kHz(2.4)},
{RIG_MODE_CW, Hz(50)},
{RIG_MODE_CW, RIG_FLT_ANY},
{RIG_MODE_RTTY, Hz(300)},
{RIG_MODE_RTTY, kHz(2.4)},
{RIG_MODE_RTTY, Hz(50)},
{RIG_MODE_RTTY, RIG_FLT_ANY},
{RIG_MODE_AM, kHz(8)},
{RIG_MODE_AM, kHz(2.4)},
{RIG_MODE_AM, kHz(10)},
{RIG_MODE_FM, kHz(15)},
{RIG_MODE_FM, kHz(8)},
{RIG_MODE_WFM, kHz(230)},
RIG_FLT_END,
},
.max_rit = 9990,
.max_xit = 9990,
.max_ifshift = 10000,
.spectrum_scopes = {
{
.id = 0,
.name = "Main",
},
{
.id = 1,
.name = "Sub",
},
{
.id = -1,
.name = NULL,
},
},
.spectrum_modes = {
RIG_SPECTRUM_MODE_CENTER,
RIG_SPECTRUM_MODE_FIXED,
RIG_SPECTRUM_MODE_CENTER_SCROLL,
RIG_SPECTRUM_MODE_FIXED_SCROLL,
RIG_SPECTRUM_MODE_NONE,
},
.spectrum_spans = {
5000,
10000,
20000,
50000,
100000,
200000,
500000,
1000000,
2000000,
5000000,
0,
},
.spectrum_avg_modes = {
{
.id = 0,
.name = "OFF",
},
{
.id = 1,
.name = "2",
},
{
.id = 2,
.name = "3",
},
{
.id = 3,
.name = "4",
},
},
.spectrum_attenuator = { 10, 20, 30, RIG_DBLST_END, },
.priv = NULL, /* priv */
.extlevels = dummy_ext_levels,
.extfuncs = dummy_ext_funcs,
.extparms = dummy_ext_parms,
.cfgparams = dummy_cfg_params,
.rig_init = dummy_init,
.rig_cleanup = dummy_cleanup,
.rig_open = dummy_open,
.rig_close = dummy_close,
.set_conf = dummy_set_conf,
.get_conf = dummy_get_conf,
.set_freq = dummy_set_freq,
.get_freq = dummy_get_freq,
.set_mode = dummy_set_mode,
.get_mode = dummy_get_mode,
.set_vfo = dummy_set_vfo,
.get_vfo = dummy_get_vfo,
.set_powerstat = dummy_set_powerstat,
.get_powerstat = dummy_get_powerstat,
.set_level = dummy_set_level,
.get_level = dummy_get_level,
.set_func = dummy_set_func,
.get_func = dummy_get_func,
.set_parm = dummy_set_parm,
.get_parm = dummy_get_parm,
.set_ext_level = dummy_set_ext_level,
.get_ext_level = dummy_get_ext_level,
.set_ext_func = dummy_set_ext_func,
.get_ext_func = dummy_get_ext_func,
.set_ext_parm = dummy_set_ext_parm,
.get_ext_parm = dummy_get_ext_parm,
.get_info = dummy_get_info,
.set_ptt = dummy_set_ptt,
.get_ptt = dummy_get_ptt,
.get_dcd = dummy_get_dcd,
.set_rptr_shift = dummy_set_rptr_shift,
.get_rptr_shift = dummy_get_rptr_shift,
.set_rptr_offs = dummy_set_rptr_offs,
.get_rptr_offs = dummy_get_rptr_offs,
.set_ctcss_tone = dummy_set_ctcss_tone,
.get_ctcss_tone = dummy_get_ctcss_tone,
.set_dcs_code = dummy_set_dcs_code,
.get_dcs_code = dummy_get_dcs_code,
.set_ctcss_sql = dummy_set_ctcss_sql,
.get_ctcss_sql = dummy_get_ctcss_sql,
.set_dcs_sql = dummy_set_dcs_sql,
.get_dcs_sql = dummy_get_dcs_sql,
.set_split_freq = dummy_set_split_freq,
.get_split_freq = dummy_get_split_freq,
.set_split_mode = dummy_set_split_mode,
.get_split_mode = dummy_get_split_mode,
.set_split_vfo = dummy_set_split_vfo,
.get_split_vfo = dummy_get_split_vfo,
.set_rit = dummy_set_rit,
.get_rit = dummy_get_rit,
.set_xit = dummy_set_xit,
.get_xit = dummy_get_xit,
.set_ts = dummy_set_ts,
.get_ts = dummy_get_ts,
.set_ant = dummy_set_ant,
.get_ant = dummy_get_ant,
.set_bank = dummy_set_bank,
.set_mem = dummy_set_mem,
.get_mem = dummy_get_mem,
.vfo_op = dummy_vfo_op,
.scan = dummy_scan,
.send_dtmf = dummy_send_dtmf,
.recv_dtmf = dummy_recv_dtmf,
.send_morse = dummy_send_morse,
.send_voice_mem = dummy_send_voice_mem,
.set_channel = dummy_set_channel,
.get_channel = dummy_get_channel,
.set_trn = dummy_set_trn,
.get_trn = dummy_get_trn,
.power2mW = dummy_power2mW,
.mW2power = dummy_mW2power,
.set_clock = dummy_set_clock,
.get_clock = dummy_get_clock,
.hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS
};
struct rig_caps dummy_no_vfo_caps =
{
RIG_MODEL(RIG_MODEL_DUMMY_NOVFO),
.model_name = "Dummy No VFO",
.mfg_name = "Hamlib",
.version = "20220510.0",
.copyright = "LGPL",
.status = RIG_STATUS_STABLE,
.rig_type = RIG_TYPE_OTHER,
.targetable_vfo = RIG_TARGETABLE_PTT | RIG_TARGETABLE_RITXIT | RIG_TARGETABLE_FREQ | RIG_TARGETABLE_MODE,
.ptt_type = RIG_PTT_RIG,
.dcd_type = RIG_DCD_RIG,
.port_type = RIG_PORT_NONE,
.has_get_func = DUMMY_FUNC,
.has_set_func = DUMMY_FUNC,
.has_get_level = DUMMY_LEVEL,
.has_set_level = RIG_LEVEL_SET(DUMMY_LEVEL),
.has_get_parm = DUMMY_PARM,
.has_set_parm = RIG_PARM_SET(DUMMY_PARM),
.level_gran = { [LVL_CWPITCH] = { .step = { .i = 10 } } },
.ctcss_list = common_ctcss_list,
.dcs_list = full_dcs_list,
.chan_list = {
{ 0, 18, RIG_MTYPE_MEM, DUMMY_MEM_CAP },
{ 19, 19, RIG_MTYPE_CALL },
{ 20, NB_CHAN - 1, RIG_MTYPE_EDGE },
RIG_CHAN_END,
},
.scan_ops = DUMMY_SCAN,
.vfo_ops = DUMMY_VFO_OP,
.transceive = RIG_TRN_RIG,
.attenuator = { 10, 20, 30, RIG_DBLST_END, },
.preamp = { 10, RIG_DBLST_END, },
.rx_range_list1 = { {
.startf = kHz(150), .endf = MHz(1500), .modes = DUMMY_MODES,
.low_power = -1, .high_power = -1, DUMMY_VFOS, RIG_ANT_1 | RIG_ANT_2 | RIG_ANT_3 | RIG_ANT_4,
.label = "Dummy#1"
},
RIG_FRNG_END,
},
.tx_range_list1 = { {
.startf = kHz(150), .endf = MHz(1500), .modes = DUMMY_MODES,
.low_power = W(5), .high_power = W(100), DUMMY_VFOS, RIG_ANT_1 | RIG_ANT_2 | RIG_ANT_3 | RIG_ANT_4,
.label = "Dummy#1"
},
RIG_FRNG_END,
},
.rx_range_list2 = { {
.startf = kHz(150), .endf = MHz(1500), .modes = DUMMY_MODES,
.low_power = -1, .high_power = -1, DUMMY_VFOS, RIG_ANT_1 | RIG_ANT_2 | RIG_ANT_3 | RIG_ANT_4,
.label = "Dummy#2"
},
RIG_FRNG_END,
},
.tx_range_list2 = { RIG_FRNG_END, },
.tuning_steps = { {DUMMY_MODES, 1}, {DUMMY_MODES, RIG_TS_ANY}, RIG_TS_END, },
.filters = {
{RIG_MODE_SSB, kHz(2.4)},
{RIG_MODE_SSB, kHz(1.8)},
{RIG_MODE_SSB, kHz(3.0)},
{RIG_MODE_SSB, RIG_FLT_ANY},
{RIG_MODE_CW, Hz(500)},
{RIG_MODE_CW, kHz(2.4)},
{RIG_MODE_CW, Hz(50)},
{RIG_MODE_CW, RIG_FLT_ANY},
{RIG_MODE_RTTY, Hz(300)},
{RIG_MODE_RTTY, kHz(2.4)},
{RIG_MODE_RTTY, Hz(50)},
{RIG_MODE_RTTY, RIG_FLT_ANY},
{RIG_MODE_AM, kHz(8)},
{RIG_MODE_AM, kHz(2.4)},
{RIG_MODE_AM, kHz(10)},
{RIG_MODE_FM, kHz(15)},
{RIG_MODE_FM, kHz(8)},
{RIG_MODE_WFM, kHz(230)},
RIG_FLT_END,
},
.max_rit = 9990,
.max_xit = 9990,
.max_ifshift = 10000,
.priv = NULL, /* priv */
.extlevels = dummy_ext_levels,
.extfuncs = dummy_ext_funcs,
.extparms = dummy_ext_parms,
.cfgparams = dummy_cfg_params,
.rig_init = dummy_init,
.rig_cleanup = dummy_cleanup,
.rig_open = dummy_open,
.rig_close = dummy_close,
.set_conf = dummy_set_conf,
.get_conf = dummy_get_conf,
.set_freq = dummy_set_freq,
.get_freq = dummy_get_freq,
.set_mode = dummy_set_mode,
.get_mode = dummy_get_mode,
.set_vfo = dummy_set_vfo,
.get_vfo = dummy_get_vfo,
.set_powerstat = dummy_set_powerstat,
.get_powerstat = dummy_get_powerstat,
.set_level = dummy_set_level,
.get_level = dummy_get_level,
.set_func = dummy_set_func,
.get_func = dummy_get_func,
.set_parm = dummy_set_parm,
.get_parm = dummy_get_parm,
.set_ext_level = dummy_set_ext_level,
.get_ext_level = dummy_get_ext_level,
.set_ext_func = dummy_set_ext_func,
.get_ext_func = dummy_get_ext_func,
.set_ext_parm = dummy_set_ext_parm,
.get_ext_parm = dummy_get_ext_parm,
.get_info = dummy_get_info,
.set_ptt = dummy_set_ptt,
.get_ptt = dummy_get_ptt,
.get_dcd = dummy_get_dcd,
.set_rptr_shift = dummy_set_rptr_shift,
.get_rptr_shift = dummy_get_rptr_shift,
.set_rptr_offs = dummy_set_rptr_offs,
.get_rptr_offs = dummy_get_rptr_offs,
.set_ctcss_tone = dummy_set_ctcss_tone,
.get_ctcss_tone = dummy_get_ctcss_tone,
.set_dcs_code = dummy_set_dcs_code,
.get_dcs_code = dummy_get_dcs_code,
.set_ctcss_sql = dummy_set_ctcss_sql,
.get_ctcss_sql = dummy_get_ctcss_sql,
.set_dcs_sql = dummy_set_dcs_sql,
.get_dcs_sql = dummy_get_dcs_sql,
.set_split_freq = dummy_set_split_freq,
.get_split_freq = dummy_get_split_freq,
.set_split_mode = dummy_set_split_mode,
.get_split_mode = dummy_get_split_mode,
.set_split_vfo = dummy_set_split_vfo,
.get_split_vfo = dummy_get_split_vfo,
.set_rit = dummy_set_rit,
.get_rit = dummy_get_rit,
.set_xit = dummy_set_xit,
.get_xit = dummy_get_xit,
.set_ts = dummy_set_ts,
.get_ts = dummy_get_ts,
.set_ant = dummy_set_ant,
.get_ant = dummy_get_ant,
.set_bank = dummy_set_bank,
.set_mem = dummy_set_mem,
.get_mem = dummy_get_mem,
.vfo_op = dummy_vfo_op,
.scan = dummy_scan,
.send_dtmf = dummy_send_dtmf,
.recv_dtmf = dummy_recv_dtmf,
.send_morse = dummy_send_morse,
.send_voice_mem = dummy_send_voice_mem,
.set_channel = dummy_set_channel,
.get_channel = dummy_get_channel,
.set_trn = dummy_set_trn,
.get_trn = dummy_get_trn,
.power2mW = dummy_power2mW,
.mW2power = dummy_mW2power,
.set_clock = dummy_set_clock,
.get_clock = dummy_get_clock,
.hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS
};
DECLARE_INITRIG_BACKEND(dummy)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: _init called\n", __func__);
rig_register(&dummy_caps);
rig_register(&netrigctl_caps);
rig_register(&flrig_caps);
rig_register(&trxmanager_caps);
rig_register(&dummy_no_vfo_caps);
rig_register(&aclog_caps);
rig_register(&sdrsharp_caps);
// rig_register(&tci1x_caps);
return RIG_OK;
}