Hamlib/rigs/kenwood/ts2000.c

1174 wiersze
35 KiB
C

/*
* Hamlib Kenwood backend - TS2000 description
* Copyright (c) 2000-2011 by Stephane Fillod
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h>
#include <string.h>
#include <hamlib/rig.h>
#include "kenwood.h"
#define TS2000_ALL_MODES (RIG_MODE_AM|RIG_MODE_CW|RIG_MODE_SSB|RIG_MODE_FM|RIG_MODE_RTTY)
#define TS2000_OTHER_TX_MODES (RIG_MODE_CW|RIG_MODE_SSB|RIG_MODE_FM|RIG_MODE_RTTY)
#define TS2000_AM_TX_MODES RIG_MODE_AM
#define TS2000_FUNC_ALL (RIG_FUNC_TONE|RIG_FUNC_TSQL|RIG_FUNC_BC|RIG_FUNC_NB|RIG_FUNC_NR|RIG_FUNC_ANF|RIG_FUNC_COMP|RIG_FUNC_RIT|RIG_FUNC_XIT)
#define TS2000_LEVEL_ALL (RIG_LEVEL_PREAMP|RIG_LEVEL_ATT|RIG_LEVEL_VOXDELAY|RIG_LEVEL_AF|RIG_LEVEL_RF|RIG_LEVEL_SQL|RIG_LEVEL_CWPITCH|RIG_LEVEL_RFPOWER|RIG_LEVEL_MICGAIN|RIG_LEVEL_KEYSPD|RIG_LEVEL_COMP|RIG_LEVEL_AGC|RIG_LEVEL_BKINDL|RIG_LEVEL_METER|RIG_LEVEL_VOXGAIN|RIG_LEVEL_ANTIVOX|RIG_LEVEL_RAWSTR|RIG_LEVEL_STRENGTH)
#define TS2000_MAINVFO (RIG_VFO_A|RIG_VFO_B)
#define TS2000_SUBVFO (RIG_VFO_C)
#define TS2000_VFO_OP (RIG_OP_UP|RIG_OP_DOWN|RIG_OP_BAND_UP|RIG_OP_BAND_DOWN)
#define TS2000_SCAN_OP (RIG_SCAN_VFO)
#define TS2000_ANTS (RIG_ANT_1|RIG_ANT_2)
#define TS2000_STR_CAL {9, {\
{0x00, -54},\
{0x03, -48},\
{0x06, -36},\
{0x09, -24},\
{0x0C, -12},\
{0x0F, 0},\
{0x14, 20},\
{0x19, 40},\
{0x1E, 60}}\
}
/* prototypes */
static int ts2000_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val);
static int ts2000_get_channel(RIG *rig, vfo_t vfo, channel_t *chan,
int read_only);
static int ts2000_set_channel(RIG *rig, vfo_t vfo, const channel_t *chan);
/*
* 38 CTCSS sub-audible tones + 1750 tone
*/
tone_t ts2000_ctcss_list[] =
{
670, 719, 744, 770, 797, 825, 854, 885, 915, 948,
974, 1000, 1035, 1072, 1109, 1148, 1188, 1230, 1273, 1318,
1365, 1413, 1462, 1514, 1567, 1622, 1679, 1738, 1799, 1862,
1928, 2035, 2107, 2181, 2257, 2336, 2418, 2503, 17500,
0,
};
/*
* 103 available DCS codes
*/
tone_t ts2000_dcs_list[] =
{
23, 25, 26, 31, 32, 36, 43, 47, 51, 53,
54, 65, 71, 72, 73, 74, 114, 115, 116, 122, 125, 131,
132, 134, 143, 145, 152, 155, 156, 162, 165, 172, 174, 205,
212, 223, 225, 226, 243, 244, 245, 246, 251, 252, 255, 261,
263, 265, 266, 271, 274, 306, 311, 315, 325, 331, 332, 343,
346, 351, 356, 364, 365, 371, 411, 412, 413, 423, 431, 432,
445, 446, 452, 454, 455, 462, 464, 465, 466, 503, 506, 516,
523, 526, 532, 546, 565, 606, 612, 624, 627, 631, 632, 654,
662, 664, 703, 712, 723, 731, 732, 734, 743, 754,
0,
};
static struct kenwood_priv_caps ts2000_priv_caps =
{
.cmdtrm = EOM_KEN,
};
/* memory capabilities */
#define TS2000_MEM_CAP { \
.freq = 1, \
.mode = 1, \
.tx_freq=1, \
.tx_mode=1, \
.split=1, \
.rptr_shift=1, \
.rptr_offs=1, \
.funcs=RIG_FUNC_REV|RIG_FUNC_TONE|RIG_FUNC_TSQL,\
.tuning_step=1, \
.ctcss_tone=1, \
.ctcss_sql=1, \
.dcs_code=1, \
.dcs_sql=1, \
.scan_group=1, \
.flags=1, \
.channel_desc=1 \
}
/*
* ts2000 rig capabilities.
*
* part of infos comes from http://www.kenwood.net/
*/
const struct rig_caps ts2000_caps =
{
RIG_MODEL(RIG_MODEL_TS2000),
.model_name = "TS-2000",
.mfg_name = "Kenwood",
.version = BACKEND_VER ".0",
.copyright = "LGPL",
.status = RIG_STATUS_STABLE,
.rig_type = RIG_TYPE_TRANSCEIVER,
.ptt_type = RIG_PTT_RIG,
.dcd_type = RIG_DCD_RIG,
.port_type = RIG_PORT_SERIAL,
.serial_rate_min = 1200,
.serial_rate_max = 57600,
.serial_data_bits = 8,
.serial_stop_bits = 1,
.serial_parity = RIG_PARITY_NONE,
.serial_handshake = RIG_HANDSHAKE_NONE,
.write_delay = 0,
.post_write_delay = 0, /* ms */
.timeout = 200,
.retry = 10,
.has_get_func = TS2000_FUNC_ALL,
.has_set_func = TS2000_FUNC_ALL,
.has_get_level = TS2000_LEVEL_ALL,
.has_set_level = RIG_LEVEL_SET(TS2000_LEVEL_ALL),
.has_get_parm = RIG_PARM_NONE,
.has_set_parm = RIG_PARM_NONE, /* FIXME: parms */
.level_gran = {}, /* FIXME: granularity */
.parm_gran = {},
.vfo_ops = TS2000_VFO_OP,
.scan_ops = TS2000_SCAN_OP,
.ctcss_list = ts2000_ctcss_list,
.dcs_list = ts2000_dcs_list,
.preamp = { 20, RIG_DBLST_END, }, /* FIXME: real preamp? */
.attenuator = { 20, RIG_DBLST_END, },
.max_rit = kHz(20),
.max_xit = kHz(20),
.max_ifshift = kHz(1),
.targetable_vfo = RIG_TARGETABLE_FREQ,
.transceive = RIG_TRN_RIG,
.bank_qty = 0,
.chan_desc_sz = 7,
.chan_list = {
{ 0, 299, RIG_MTYPE_MEM, TS2000_MEM_CAP },
RIG_CHAN_END,
},
.rx_range_list1 = {
{kHz(300), MHz(60), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO, TS2000_ANTS},
{MHz(144), MHz(146), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(430), MHz(440), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(144), MHz(146), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
{MHz(430), MHz(440), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
RIG_FRNG_END,
}, /* rx range */
.tx_range_list1 = {
{kHz(1830), kHz(1850), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(1830), kHz(1850), TS2000_AM_TX_MODES, 2000, 25000, TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), kHz(3800), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), kHz(3800), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7100), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7100), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(50.2), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(50.2), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(144), MHz(146), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO},
{MHz(144), MHz(146), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO},
{MHz(430), MHz(440), TS2000_OTHER_TX_MODES, W(5), W(50), TS2000_MAINVFO},
{MHz(430), MHz(440), TS2000_AM_TX_MODES, W(5), W(12.5), TS2000_MAINVFO},
RIG_FRNG_END,
}, /* tx range */
.rx_range_list2 = {
{kHz(300), MHz(60), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO, TS2000_ANTS},
{MHz(142), MHz(152), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(420), MHz(450), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(118), MHz(174), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
{MHz(220), MHz(512), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
RIG_FRNG_END,
}, /* rx range */
.tx_range_list2 = {
{kHz(1800), MHz(2), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(1800), MHz(2), TS2000_AM_TX_MODES, 2000, 25000, TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), MHz(4), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), MHz(4), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7300), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7300), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(54), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(54), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(144), MHz(148), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO},
{MHz(144), MHz(148), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO},
{MHz(430), MHz(450), TS2000_OTHER_TX_MODES, W(5), W(50), TS2000_MAINVFO},
{MHz(430), MHz(450), TS2000_AM_TX_MODES, W(5), W(12.5), TS2000_MAINVFO},
RIG_FRNG_END,
}, /* tx range */
.tuning_steps = {
{RIG_MODE_SSB | RIG_MODE_CW | RIG_MODE_RTTY, 1},
{TS2000_ALL_MODES, 10},
{TS2000_ALL_MODES, 100},
{TS2000_ALL_MODES, kHz(1)},
{TS2000_ALL_MODES, kHz(2.5)},
{TS2000_ALL_MODES, kHz(5)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(6.25)},
{TS2000_ALL_MODES, kHz(10)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(12.5)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(12.5)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(15)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(20)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(25)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(30)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(50)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(100)},
{TS2000_ALL_MODES, MHz(1)},
{TS2000_ALL_MODES, 0}, /* any tuning step */
RIG_TS_END,
},
/* mode/filter list, remember: order matters! */
.filters = {
{RIG_MODE_SSB, kHz(2.2)},
{RIG_MODE_CW, Hz(600)},
{RIG_MODE_RTTY, Hz(1500)},
{RIG_MODE_AM, kHz(6)},
{RIG_MODE_FM | RIG_MODE_AM, kHz(12)},
RIG_FLT_END,
},
.str_cal = TS2000_STR_CAL,
.priv = (void *)& ts2000_priv_caps,
.rig_init = kenwood_init,
.rig_open = kenwood_open,
.rig_close = kenwood_close,
.rig_cleanup = kenwood_cleanup,
.set_freq = kenwood_set_freq,
.get_freq = kenwood_get_freq,
.set_rit = kenwood_set_rit,
.get_rit = kenwood_get_rit,
.set_xit = kenwood_set_xit,
.get_xit = kenwood_get_xit,
.set_mode = kenwood_set_mode,
.get_mode = kenwood_get_mode,
.set_vfo = kenwood_set_vfo,
.get_vfo = kenwood_get_vfo_if,
.set_split_vfo = kenwood_set_split_vfo,
.get_split_vfo = kenwood_get_split_vfo_if,
.set_ctcss_tone = kenwood_set_ctcss_tone_tn,
.get_ctcss_tone = kenwood_get_ctcss_tone,
.set_ctcss_sql = kenwood_set_ctcss_sql,
.get_ctcss_sql = kenwood_get_ctcss_sql,
.get_ptt = kenwood_get_ptt,
.set_ptt = kenwood_set_ptt,
.get_dcd = kenwood_get_dcd,
.set_func = kenwood_set_func,
.get_func = kenwood_get_func,
.set_level = kenwood_set_level,
.get_level = ts2000_get_level,
.set_ant = kenwood_set_ant,
.get_ant = kenwood_get_ant,
.send_morse = kenwood_send_morse,
.wait_morse = rig_wait_morse,
.vfo_op = kenwood_vfo_op,
.scan = kenwood_scan,
.set_mem = kenwood_set_mem,
.get_mem = kenwood_get_mem,
.get_channel = ts2000_get_channel,
.set_channel = ts2000_set_channel,
.set_trn = kenwood_set_trn,
.get_trn = kenwood_get_trn,
.set_powerstat = kenwood_set_powerstat,
.get_powerstat = kenwood_get_powerstat,
.get_info = kenwood_get_info,
.reset = kenwood_reset,
.hamlib_check_rig_caps = "HAMLIB_CHECK_RIG_CAPS"
};
/*
* Function definitions below
*/
/*
* ts2000_get_channel
* Read command format:
M|R|P1|P2|P3|P3|;|
* P1: 0 - RX frequency, 1 - TX frequency
Memory channel 290 ~ 299: P1=0 (start frequency), P1=1 (end frequency)
P2 - bank number
allowed values: <space>, 0, 1 or 2
P3 - channel number 00-99
Returned value:
M | R |P1 |P2 |P3 |P3 |P4 |P4 |P4 |P4 |
P4 |P4 |P4 |P4 |P4 |P4 |P4 |P5 |P6 |P7 |
P8 |P8 |P9 |P9 |P10|P10|P10|P11|P12|P13|
P13|P13|P13|P13|P13|P13|P13|P13|P14|P14|
P15|P16|P16|P16|P16|P16|P16|P16|P16| ; |
P1 - P3 described above
P4: Frequency in Hz (11-digit).
P5: Mode. 1: LSB, 2: USB, 3: CW, 4: FM, 5: AM, 6: FSK, 7: CR-R, 8: Reserved, 9: FSK-R
P6: Lockout status. 0: Lockout OFF, 1: Lockout ON.
P7: 0: OFF, 1: TONE, 2: CTCSS, 3: DCS.
P8: Tone Number. Allowed values 01 (67Hz) - 38 (250.3Hz)
P9: CTCSS tone number. Allowed values 01 (67Hz) - 38 (250.3Hz)
P10: DCS code. Allowed values 000 (023 DCS code) to 103 (754 DCS code).
P11: REVERSE status.
P12: SHIFT status. 0: Simplex, 1: +, 2: –, 3: = (All E-types)
P13: Offset frequency in Hz (9-digit).
Allowed values 000000000 - 059950000 in steps of 50000. Unused digits must be 0.
P14: Step size. Allowed values:
for SSB, CW, FSK mode: 00 - 03
00: 1 kHz, 01: 2.5 kHz, 02: 5 kHz, 03: 10 kHz
for AM, FM mode: 00 - 09
00: 5 kHz, 01: 6.25 kHz, 02: 10 kHz, 03: 12.5 kHz, 04: 15 kHz,
05: 20 kHz, 06: 25 kHz, 07: 30 kHz, 08: 50 kHz, 09: 100 kHz
P15: Memory Group number (0 ~ 9).
P16: Memory name. A maximum of 8 characters.
*/
int ts2000_get_channel(RIG *rig, vfo_t vfo, channel_t *chan, int read_only)
{
int err;
int tmp;
size_t length;
char buf[52];
char cmd[8];
struct kenwood_priv_caps *caps = kenwood_caps(rig);
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!chan || chan->vfo != RIG_VFO_MEM)
{
return -RIG_EINVAL;
}
/* put channel num in the command string */
SNPRINTF(cmd, sizeof(cmd), "MR0%03d;", chan->channel_num);
err = kenwood_transaction(rig, cmd, buf, sizeof(buf));
if (err != RIG_OK)
{
return err;
}
length = strlen(buf);
memset(chan, 0x00, sizeof(channel_t));
chan->vfo = RIG_VFO_MEM;
/* parse from right to left */
/* XXX based on the available documentation, there is no command
* to read out the filters of a given memory channel. The rig, however,
* stores this information.
*/
/* First check if a name is assigned.
Name is returned at positions 41-48 (counting from 0) */
if (length > 41)
{
// rig_debug(RIG_DEBUG_VERBOSE, "Copying channel description: %s\n", &buf[ 41 ] );
strcpy(chan->channel_desc, &buf[ 41 ]);
}
/* Memory group no */
chan->scan_group = buf[ 40 ] - '0';
/* Fields 38-39 contain tuning step as a number 00 - 09.
Tuning step depends on this number and the mode,
just save it for now */
buf[ 40 ] = '\0';
tmp = atoi(&buf[ 38]);
/* Offset frequency */
buf[ 38 ] = '\0';
chan->rptr_offs = atoi(&buf[ 29 ]);
/* Shift type
WARNING: '=' shift type not programmed */
if (buf[ 28 ] == '1')
{
chan->rptr_shift = RIG_RPT_SHIFT_PLUS;
}
else
{
if (buf[ 28 ] == '2')
{
chan->rptr_shift = RIG_RPT_SHIFT_MINUS;
}
else
{
chan->rptr_shift = RIG_RPT_SHIFT_NONE;
}
}
/* Reverse status */
if (buf[27] == '1')
{
chan->funcs |= RIG_FUNC_REV;
}
/* Check for tone, CTCSS and DCS */
/* DCS code first */
if (buf[ 19 ] == '3')
{
if (rig->caps->dcs_list)
{
buf[ 27 ] = '\0';
chan->dcs_code = rig->caps->dcs_list[ atoi(&buf[ 24 ]) ];
chan->dcs_sql = chan->dcs_code;
chan->ctcss_tone = 0;
chan->ctcss_sql = 0;
}
}
else
{
chan->dcs_code = 0;
chan->dcs_sql = 0;
/* CTCSS code
Caution, CTCSS codes, unlike DCS codes, are numbered from 1! */
buf[ 24 ] = '\0';
if (buf[ 19 ] == '2')
{
chan->funcs |= RIG_FUNC_TSQL;
if (rig->caps->ctcss_list)
{
chan->ctcss_sql = rig->caps->ctcss_list[ atoi(&buf[22]) - 1 ];
chan->ctcss_tone = 0;
}
}
else
{
chan->ctcss_sql = 0;
/* CTCSS tone */
if (buf[ 19 ] == '1')
{
chan->funcs |= RIG_FUNC_TONE;
buf[ 22 ] = '\0';
if (rig->caps->ctcss_list)
{
chan->ctcss_tone = rig->caps->ctcss_list[ atoi(&buf[20]) - 1 ];
}
}
else
{
chan->ctcss_tone = 0;
}
}
}
/* memory lockout */
if (buf[18] == '1')
{
chan->flags |= RIG_CHFLAG_SKIP;
}
/* mode */
chan->mode = kenwood2rmode(buf[17] - '0', caps->mode_table);
/* Now we have the mode, let's finish the tuning step */
if ((chan->mode == RIG_MODE_AM) || (chan->mode == RIG_MODE_FM))
{
switch (tmp)
{
case 0: chan->tuning_step = kHz(5); break;
case 1: chan->tuning_step = kHz(6.25); break;
case 2: chan->tuning_step = kHz(10); break;
case 3: chan->tuning_step = kHz(12.5); break;
case 4: chan->tuning_step = kHz(15); break;
case 5: chan->tuning_step = kHz(20); break;
case 6: chan->tuning_step = kHz(25); break;
case 7: chan->tuning_step = kHz(30); break;
case 8: chan->tuning_step = kHz(50); break;
case 9: chan->tuning_step = kHz(100); break;
default: chan->tuning_step = 0;
}
}
else
{
switch (tmp)
{
case 0: chan->tuning_step = kHz(1); break;
case 1: chan->tuning_step = kHz(2.5); break;
case 2: chan->tuning_step = kHz(5); break;
case 3: chan->tuning_step = kHz(10); break;
default: chan->tuning_step = 0;
}
}
/* Frequency */
buf[17] = '\0';
chan->freq = atoi(&buf[6]);
if (chan->freq == RIG_FREQ_NONE)
{
return -RIG_ENAVAIL;
}
buf[6] = '\0';
chan->channel_num = atoi(&buf[3]);
/* Check split freq */
cmd[2] = '1';
err = kenwood_transaction(rig, cmd, buf, sizeof(buf));
if (err != RIG_OK)
{
return err;
}
chan->tx_mode = kenwood2rmode(buf[17] - '0', caps->mode_table);
buf[17] = '\0';
chan->tx_freq = atoi(&buf[6]);
if (chan->freq == chan->tx_freq)
{
chan->tx_freq = RIG_FREQ_NONE;
chan->tx_mode = RIG_MODE_NONE;
chan->split = RIG_SPLIT_OFF;
}
else
{
chan->split = RIG_SPLIT_ON;
}
if (!read_only)
{
// Set rig to channel values
rig_debug(RIG_DEBUG_ERR,
"%s: please contact hamlib mailing list to implement this\n", __func__);
rig_debug(RIG_DEBUG_ERR,
"%s: need to know if rig updates when channel read or not\n", __func__);
return -RIG_ENIMPL;
}
return RIG_OK;
}
int ts2000_set_channel(RIG *rig, vfo_t vfo, const channel_t *chan)
{
char sqltype = '0';
char buf[128];
char mode, tx_mode = 0;
char shift = '0';
short dcscode = 0;
short code = 0;
int tstep = 0;
int err;
int tone = 0;
struct kenwood_priv_caps *caps = kenwood_caps(rig);
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!chan)
{
return -RIG_EINVAL;
}
mode = rmode2kenwood(chan->mode, caps->mode_table);
if (mode < 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%s'\n",
__func__, rig_strrmode(chan->mode));
return -RIG_EINVAL;
}
if (chan->split == RIG_SPLIT_ON)
{
tx_mode = rmode2kenwood(chan->tx_mode, caps->mode_table);
if (tx_mode < 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%s'\n",
__func__, rig_strrmode(chan->tx_mode));
return -RIG_EINVAL;
}
}
/* find tone */
if (chan->ctcss_tone)
{
for (; rig->caps->ctcss_list[tone] != 0; tone++)
{
if (chan->ctcss_tone == rig->caps->ctcss_list[tone])
{
break;
}
}
if (chan->ctcss_tone != rig->caps->ctcss_list[tone]) { tone = -1; }
else { sqltype = '1'; }
}
else
{
tone = -1; /* -1 because we will add 1 when outputting; this is necessary as CTCSS codes are numbered from 1 */
}
/* find CTCSS code */
if (chan->ctcss_sql)
{
for (; rig->caps->ctcss_list[code] != 0; code++)
{
if (chan->ctcss_sql == rig->caps->ctcss_list[code])
{
break;
}
}
if (chan->ctcss_sql != rig->caps->ctcss_list[code]) { code = -1; }
else { sqltype = '2'; }
}
else
{
code = -1;
}
/* find DCS code */
if (chan->dcs_code)
{
for (; rig->caps->dcs_list[dcscode] != 0; dcscode++)
{
if (chan->dcs_code == rig->caps->dcs_list[dcscode])
{
break;
}
}
if (chan->dcs_code != rig->caps->dcs_list[dcscode]) { dcscode = 0; }
else { sqltype = '3'; }
}
else
{
dcscode = 0;
}
if (chan->rptr_shift == RIG_RPT_SHIFT_PLUS)
{
shift = '1';
}
if (chan->rptr_shift == RIG_RPT_SHIFT_MINUS)
{
shift = '2';
}
if ((chan->mode == RIG_MODE_AM) || (chan->mode == RIG_MODE_FM))
{
switch (chan->tuning_step)
{
case s_kHz(6.25): tstep = 1; break;
case s_kHz(10): tstep = 2; break;
case s_kHz(12.5): tstep = 3; break;
case s_kHz(15): tstep = 4; break;
case s_kHz(20): tstep = 5; break;
case s_kHz(25): tstep = 6; break;
case s_kHz(30): tstep = 7; break;
case s_kHz(50): tstep = 8; break;
case s_kHz(100): tstep = 9; break;
default: tstep = 0;
}
}
else
{
switch (chan->tuning_step)
{
case s_kHz(2.5): tstep = 1; break;
case s_kHz(5): tstep = 2; break;
case s_kHz(10): tstep = 3; break;
default: tstep = 0;
}
}
/* P-number 2-3 4 5 6 7 8 9 101112 13 141516 */
SNPRINTF(buf, sizeof(buf), "MW0%03d%011u%c%c%c%02d%02d%03d%c%c%09d0%c%c%s;",
chan->channel_num,
(unsigned) chan->freq, /* 4 - frequency */
'0' + mode, /* 5 - mode */
(chan->flags & RIG_CHFLAG_SKIP) ? '1' : '0', /* 6 - lockout status */
sqltype, /* 7 - squelch and tone type */
tone + 1, /* 8 - tone code */
code + 1, /* 9 - CTCSS code */
dcscode, /* 10 - DCS code */
(chan->funcs & RIG_FUNC_REV) ? '1' : '0', /* 11 - Reverse status */
shift, /* 12 - shift type */
(int) chan->rptr_offs, /* 13 - offset frequency */
tstep + '0', /* 14 - Step size */
chan->scan_group + '0', /* 15 - Memory group no */
chan->channel_desc /* 16 - description */
);
rig_debug(RIG_DEBUG_VERBOSE, "The command will be: %s\n", buf);
err = kenwood_transaction(rig, buf, NULL, 0);
if (err != RIG_OK)
{
return err;
}
if (chan->split == RIG_SPLIT_ON)
{
SNPRINTF(buf, sizeof(buf), "MW1%03d%011u%c%c%c%02d%02d%03d%c%c%09d0%c%c%s;\n",
chan->channel_num,
(unsigned) chan->tx_freq, /* 4 - frequency */
'0' + tx_mode, /* 5 - mode */
(chan->flags & RIG_CHFLAG_SKIP) ? '1' : '0', /* 6 - lockout status */
sqltype, /* 7 - squelch and tone type */
tone + 1, /* 8 - tone code */
code + 1, /* 9 - CTCSS code */
dcscode + 1, /* 10 - DCS code */
(chan->funcs & RIG_FUNC_REV) ? '1' : '0', /* 11 - Reverse status */
shift, /* 12 - shift type */
(int) chan->rptr_offs, /* 13 - offset frequency */
tstep + '0', /* 14 - Step size */
chan->scan_group + '0', /* Memory group no */
chan->channel_desc /* 16 - description */
);
rig_debug(RIG_DEBUG_VERBOSE, "Split, the command will be: %s\n", buf);
err = kenwood_transaction(rig, buf, NULL, 0);
}
return err;
}
/*
* ts2000_get_level
* Assumes rig!=NULL, val!=NULL
*/
int ts2000_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val)
{
char lvlbuf[50];
size_t lvl_len;
int lvl, retval, ret, agclevel;
lvl_len = 50;
switch (level)
{
case RIG_LEVEL_PREAMP:
retval = kenwood_transaction(rig, "PA", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if ((lvl_len != 4)) /*TS-2000 returns 4 chars for PA; */
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n",
__func__, (int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
if (lvl < 10) /* just checking for main receiver preamp setting */
{
val->i = 0;
}
if (lvl > 9)
{
val->i = rig->state.preamp[0];
}
break;
case RIG_LEVEL_ATT:
retval = kenwood_transaction(rig, "RA", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if ((lvl_len != 6)) /* TS-2000 returns 6 chars for RA; */
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
if (lvl < 100) /* just checking main band attenuator */
{
val->i = 0;
}
if (lvl > 99)
{
val->i = rig->state.attenuator[0]; /* Since the TS-2000 only has one step on the attenuator */
}
break;
case RIG_LEVEL_VOXDELAY:
retval = kenwood_transaction(rig, "VD", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 6)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
val->i = lvl / 100;
break;
case RIG_LEVEL_AF:
return kenwood_get_level(rig, vfo, level, val);
case RIG_LEVEL_RF:
retval = kenwood_transaction(rig, "RG", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 5)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
val->f = lvl / 255.0;
break;
case RIG_LEVEL_SQL:
retval = kenwood_transaction(rig, "SQ0", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 6)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 3, "%d", &lvl);
val->f = lvl / 255.0;
break;
case RIG_LEVEL_CWPITCH:
retval = kenwood_transaction(rig, "EX0310000", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 15)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d answer=%s\n", __func__,
(int)lvl_len, lvlbuf);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 8, "%d", &lvl);
val->i = 400 + (50 * lvl);
break;
case RIG_LEVEL_RFPOWER:
retval = kenwood_transaction(rig, "PC", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 5)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 3, "%d", &lvl);
val->f = lvl / 100.0; /* FIXME: for 1.2GHZ need to divide by 10 */
break;
case RIG_LEVEL_MICGAIN:
return kenwood_get_level(rig, vfo, level, val);
case RIG_LEVEL_KEYSPD:
retval = kenwood_transaction(rig, "KS", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 5)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
val->i = lvl;
break;
case RIG_LEVEL_NOTCHF:
return -RIG_ENIMPL;
break;
case RIG_LEVEL_COMP:
retval = kenwood_transaction(rig, "PL", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 8)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
lvl = lvl / 1000;
val->f = lvl / 100.0;
break;
case RIG_LEVEL_AGC: /* FIX ME: ts2000 returns 0 -20 for AGC */
ret = get_kenwood_level(rig, "GT", &val->f, NULL);
agclevel = 255.0 * val->f;
if (agclevel == 0) { val->i = 0; }
else if (agclevel < 85) { val->i = 1; }
else if (agclevel < 170) { val->i = 2; }
else if (agclevel <= 255) { val->i = 3; }
return ret;
break;
case RIG_LEVEL_BKINDL:
retval = kenwood_transaction(rig, "SD", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 6)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
val->i = lvl / 100;
break;
case RIG_LEVEL_BALANCE:
return -RIG_ENIMPL;
break;
case RIG_LEVEL_METER:
retval = kenwood_transaction(rig, "RM", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 7)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
val->i = lvl / 10000;
break;
case RIG_LEVEL_VOXGAIN:
retval = kenwood_transaction(rig, "VG", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (lvl_len != 5)
{
rig_debug(RIG_DEBUG_ERR, "%s: unexpected answer len=%d\n", __func__,
(int)lvl_len);
return -RIG_ERJCTED;
}
sscanf(lvlbuf + 2, "%d", &lvl);
val->f = lvl / 9.0;
break;
case RIG_LEVEL_ANTIVOX:
return -RIG_ENIMPL;
break;
case RIG_LEVEL_RAWSTR:
case RIG_LEVEL_STRENGTH:
retval = kenwood_transaction(rig, "SM0", lvlbuf, sizeof(lvlbuf));
if (retval != RIG_OK)
{
return retval;
}
lvl_len = strlen(lvlbuf);
if (((lvl_len != 7)) || lvlbuf[1] != 'M')
{
/* TS-2000 returns 8 bytes for S meter level */
rig_debug(RIG_DEBUG_ERR, "%s: wrong answer len=%d\n", __func__, (int)lvl_len);
return -RIG_ERJCTED;
}
/* Frontend expects: -54 = S0, 0 = S9 */
sscanf(lvlbuf + 3, "%d", &val->i);
/* TS-2000 main receiver returns values from 0 - 30 */
/* so scale the value */
if (level == RIG_LEVEL_STRENGTH)
{
val->i = (val->i * 3.6) - 54;
}
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unsupported get_level %s", __func__,
rig_strlevel(level));
return -RIG_EINVAL;
}
return RIG_OK;
}