Hamlib/rigs/flexradio/sdr1k.c

515 wiersze
13 KiB
C

/*
* Hamlib backend - SDR-1000
* Copyright (c) 2003-2010 by Stephane Fillod
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <hamlib/config.h>
#include <stdlib.h>
#include <string.h> /* String function definitions */
#include <unistd.h> /* UNIX standard function definitions */
#include <math.h>
#include "hamlib/rig.h"
#include "parallel.h"
#include "misc.h"
#include "bandplan.h"
#include "register.h"
#include "flexradio.h"
static int sdr1k_set_freq(RIG *rig, vfo_t vfo, freq_t freq);
static int sdr1k_get_freq(RIG *rig, vfo_t vfo, freq_t *freq);
static int sdr1k_reset(RIG *rig, reset_t reset);
static int sdr1k_init(RIG *rig);
static int sdr1k_open(RIG *rig);
static int sdr1k_close(RIG *rig);
static int sdr1k_cleanup(RIG *rig);
static int sdr1k_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt);
static int sdr1k_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val);
typedef enum { L_EXT = 0, L_BAND = 1, L_DDS0 = 2, L_DDS1 = 3 } latch_t;
#define TR 0x40
#define MUTE 0x80
#define GAIN 0x80
#define WRB 0x40
#define RESET 0x80
/* DDS Control Constants */
#define COMP_PD 0x10 /* DDS Comparator power down */
#define DIG_PD 0x01 /* DDS Digital Power down */
#define BYPASS_PLL 0x20 /* Bypass DDS PLL */
#define INT_IOUD 0x01 /* Internal IO Update */
#define OSK_EN 0x20 /* Offset Shift Keying enable */
#define OSK_INT 0x10 /* Offset Shift Keying */
#define BYPASS_SINC 0x40 /* Bypass Inverse Sinc Filter */
#define PLL_RANGE 0x40 /* Set PLL Range */
static int write_latch(RIG *rig, latch_t which, unsigned value, unsigned mask);
static int dds_write_reg(RIG *rig, unsigned addr, unsigned data);
static int set_bit(RIG *rig, latch_t reg, unsigned bit, unsigned state);
#define DEFAULT_XTAL MHz(200)
#define DEFAULT_PLL_MULT 1
#define DEFAULT_DAC_MULT 4095
struct sdr1k_priv_data
{
unsigned shadow[4]; /* shadow latches */
freq_t dds_freq; /* current freq */
freq_t xtal; /* base XTAL */
int pll_mult; /* PLL mult */
};
#define SDR1K_FUNC RIG_FUNC_MUTE
#define SDR1K_LEVEL RIG_LEVEL_PREAMP
#define SDR1K_PARM RIG_PARM_NONE
#define SDR1K_MODES (RIG_MODE_NONE)
#define SDR1K_VFO RIG_VFO_A
#define SDR1K_ANTS 0
/* ************************************************************************* */
/*
* http://www.flex-radio.com
* SDR-1000 rig capabilities.
*
*
* TODO: RIG_FUNC_MUTE, set_external_pin?
*
* def set_mute (self, mute = 1):
* self.set_bit(1, 7, mute)
*
* def set_unmute (self):
* self.set_bit(1, 7, 0)
*
* def set_external_pin (self, pin, on = 1):
* assert (pin < 8 and pin > 0), "Out of range 1..7"
* self.set_bit(0, pin-1, on)
*
* def read_input_pin
*
* set_conf(XTAL,PLL_mult,spur_red)
*
* What about IOUD_Clock?
*/
const struct rig_caps sdr1k_rig_caps =
{
RIG_MODEL(RIG_MODEL_SDR1000),
.model_name = "SDR-1000",
.mfg_name = "Flex-radio",
.version = "20200323.0",
.copyright = "LGPL",
.status = RIG_STATUS_ALPHA,
.rig_type = RIG_TYPE_TUNER,
.targetable_vfo = 0,
.ptt_type = RIG_PTT_RIG,
.dcd_type = RIG_DCD_NONE,
.port_type = RIG_PORT_PARALLEL,
.has_get_func = SDR1K_FUNC,
.has_set_func = SDR1K_FUNC,
.has_get_level = SDR1K_LEVEL,
.has_set_level = RIG_LEVEL_SET(SDR1K_LEVEL),
.has_get_parm = SDR1K_PARM,
.has_set_parm = RIG_PARM_SET(SDR1K_PARM),
.chan_list = {
RIG_CHAN_END,
},
.scan_ops = RIG_SCAN_NONE,
.vfo_ops = RIG_OP_NONE,
.transceive = RIG_TRN_OFF,
.attenuator = { RIG_DBLST_END, },
.preamp = { 14, RIG_DBLST_END, },
.rx_range_list1 = { {
.startf = Hz(1), .endf = MHz(65), .modes = SDR1K_MODES,
.low_power = -1, .high_power = -1, SDR1K_VFO
},
RIG_FRNG_END,
},
.tx_range_list1 = {
/* restricted to ham band */
FRQ_RNG_HF(1, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS),
FRQ_RNG_6m(1, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS),
RIG_FRNG_END,
},
.rx_range_list2 = { {
.startf = Hz(1), .endf = MHz(65), .modes = SDR1K_MODES,
.low_power = -1, .high_power = -1, SDR1K_VFO
},
RIG_FRNG_END,
},
.tx_range_list2 = {
/* restricted to ham band */
FRQ_RNG_HF(2, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS),
FRQ_RNG_6m(2, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS),
RIG_FRNG_END,
},
.tuning_steps = { {SDR1K_MODES, 1},
RIG_TS_END,
},
.priv = NULL, /* priv */
.rig_init = sdr1k_init,
.rig_open = sdr1k_open,
.rig_close = sdr1k_close,
.rig_cleanup = sdr1k_cleanup,
.set_freq = sdr1k_set_freq,
.get_freq = sdr1k_get_freq,
.set_ptt = sdr1k_set_ptt,
.reset = sdr1k_reset,
.set_level = sdr1k_set_level,
// .set_func = sdr1k_set_func,
.hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS
};
/* ************************************************************************* */
int sdr1k_init(RIG *rig)
{
struct sdr1k_priv_data *priv;
rig->state.priv = (struct sdr1k_priv_data *)malloc(sizeof(
struct sdr1k_priv_data));
if (!rig->state.priv)
{
/* whoops! memory shortage! */
return -RIG_ENOMEM;
}
priv = rig->state.priv;
priv->dds_freq = RIG_FREQ_NONE;
priv->xtal = DEFAULT_XTAL;
priv->pll_mult = DEFAULT_PLL_MULT;
return RIG_OK;
}
static void pdelay(RIG *rig)
{
unsigned char r;
par_read_data(&rig->state.rigport, &r); /* ~1us */
}
int sdr1k_open(RIG *rig)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
priv->shadow[0] = 0;
priv->shadow[1] = 0;
priv->shadow[2] = 0;
priv->shadow[3] = 0;
sdr1k_reset(rig, 1);
return RIG_OK;
}
int sdr1k_close(RIG *rig)
{
/* TODO: release relays? */
return RIG_OK;
}
int sdr1k_cleanup(RIG *rig)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
if (priv)
{
free(priv);
}
rig->state.priv = NULL;
return RIG_OK;
}
static int set_band(RIG *rig, freq_t freq)
{
int band, ret;
/* set_band */
if (freq <= MHz(2.25))
{
band = 0;
}
else if (freq <= MHz(5.5))
{
band = 1;
}
else if (freq <= MHz(11))
{
band = 3; /* due to wiring mistake on board */
}
else if (freq <= MHz(22))
{
band = 2; /* due to wiring mistake on board */
}
else if (freq <= MHz(37.5))
{
band = 4;
}
else
{
band = 5;
}
ret = write_latch(rig, L_BAND, 1 << band, 0x3f);
// cppcheck-suppress *
rig_debug(RIG_DEBUG_VERBOSE, "%s %"PRIll" band %d\n", __func__, (int64_t)freq,
band);
return ret;
}
/*
* set DDS frequency.
* NB: due to spur reduction, effective frequency might not be the expected one
*/
int sdr1k_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
int i;
double ftw;
double DDS_step_size;
freq_t frqval;
// why is spur_red always true?
// int spur_red = 1;
#define spur_red 1
int ret;
ret = set_band(rig, freq);
if (ret != RIG_OK)
{
return ret;
}
/* Calculate DDS step for spu reduction
* DDS steps = 3051.7578125Hz
*/
DDS_step_size = ((double)priv->xtal * priv->pll_mult) / 65536;
rig_debug(RIG_DEBUG_VERBOSE, "%s DDS step size %g %g %g\n", __func__,
DDS_step_size, (double)freq / DDS_step_size,
rint((double)freq / DDS_step_size));
// why is spur_red always true?
if (spur_red)
{
frqval = (freq_t)(DDS_step_size * rint((double)freq / DDS_step_size));
}
else
{
frqval = freq;
}
rig_debug(RIG_DEBUG_VERBOSE, "%s curr %"PRIll" frqval %"PRIll"\n", __func__,
(int64_t)freq, (int64_t)frqval);
if (priv->dds_freq == frqval)
{
return RIG_OK;
}
/*** */
ftw = (double)frqval / priv->xtal ;
for (i = 0; i < 6; i++)
{
unsigned word;
if (spur_red && i == 2)
{
word = 128;
}
else if (spur_red && i > 2)
{
word = 0;
}
else
{
word = (unsigned)(ftw * 256);
ftw = ftw * 256 - word;
}
rig_debug(RIG_DEBUG_TRACE, "DDS %d [%02x]\n", i, word);
ret = dds_write_reg(rig, 4 + i, word);
if (ret != RIG_OK)
{
return ret;
}
}
priv->dds_freq = frqval;
return ret;
}
int sdr1k_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
*freq = priv->dds_freq;
rig_debug(RIG_DEBUG_TRACE, "%s: %"PRIll"\n", __func__, (int64_t)priv->dds_freq);
return RIG_OK;
}
/* Set DAC multiplier value */
static int DAC_mult(RIG *rig, unsigned mult)
{
rig_debug(RIG_DEBUG_TRACE, "DAC [%02x,%02x]\n", mult >> 8, mult & 0xff);
/* Output Shape Key I Mult */
dds_write_reg(rig, 0x21, mult >> 8);
dds_write_reg(rig, 0x22, mult & 0xff);
/* Output Shape Key Q Mult */
dds_write_reg(rig, 0x23, mult >> 8);
dds_write_reg(rig, 0x24, mult & 0xff);
return RIG_OK;
}
int sdr1k_reset(RIG *rig, reset_t reset)
{
/* Reset all Latches (relays off) */
write_latch(rig, L_BAND, 0x00, 0xff);
write_latch(rig, L_DDS1, 0x00, 0xff);
write_latch(rig, L_DDS0, 0x00, 0xff);
write_latch(rig, L_EXT, 0x00, 0xff);
/* Reset DDS */
write_latch(rig, L_DDS1, RESET | WRB, 0xff); /* reset the DDS chip */
write_latch(rig, L_DDS1, WRB, 0xff); /* leave WRB high */
dds_write_reg(rig, 0x1d, COMP_PD); /* Power down comparator */
/* TODO: add PLL multiplier property and logic */
dds_write_reg(rig, 0x1e, BYPASS_PLL); /* Bypass PLL */
dds_write_reg(rig, 0x20,
BYPASS_SINC | OSK_EN); /* Bypass Inverse Sinc and enable DAC */
DAC_mult(rig, DEFAULT_DAC_MULT); /* Set DAC multiplier value */
return RIG_OK;
}
int sdr1k_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt)
{
return set_bit(rig, L_BAND, 6, ptt == RIG_PTT_ON);
}
int sdr1k_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val)
{
rig_debug(RIG_DEBUG_TRACE, "%s: %s %d\n", __func__, rig_strlevel(level), val.i);
switch (level)
{
case RIG_LEVEL_PREAMP:
return set_bit(rig, L_EXT, 7, !(val.i == rig->caps->preamp[0]));
break;
default:
return -RIG_EINVAL;
}
}
int
write_latch(RIG *rig, latch_t which, unsigned value, unsigned mask)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
hamlib_port_t *pport = &rig->state.rigport;
if (!(L_EXT <= which && which <= L_DDS1))
{
return -RIG_EINVAL;
}
par_lock(pport);
priv->shadow[which] = (priv->shadow[which] & ~mask) | (value & mask);
par_write_data(pport, priv->shadow[which]);
pdelay(rig);
par_write_control(pport, 0x0F ^ (1 << which));
pdelay(rig);
par_write_control(pport, 0x0F);
pdelay(rig);
par_unlock(pport);
return RIG_OK;
}
int
dds_write_reg(RIG *rig, unsigned addr, unsigned data)
{
#if 0
write_latch(rig, L_DDS1, addr & 0x3f, 0x3f);
write_latch(rig, L_DDS0, data, 0xff);
write_latch(rig, L_DDS1, 0x40, 0x40);
write_latch(rig, L_DDS1, 0x00, 0x40);
#else
/* set up data bits */
write_latch(rig, L_DDS0, data, 0xff);
/* set up address bits with WRB high */
//write_latch (rig, L_DDS1, addr & 0x3f, 0x3f);
write_latch(rig, L_DDS1, WRB | addr, 0xff);
/* send write command with WRB low */
write_latch(rig, L_DDS1, addr, 0xff);
/* return WRB high */
write_latch(rig, L_DDS1, WRB, 0xff);
#endif
return RIG_OK;
}
int
set_bit(RIG *rig, latch_t reg, unsigned bit, unsigned state)
{
unsigned val;
val = state ? 1 << bit : 0;
return write_latch(rig, reg, val, 1 << bit);
}