/* * Hamlib backend - SDR-1000 * Copyright (c) 2003-2010 by Stephane Fillod * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include /* String function definitions */ #include /* UNIX standard function definitions */ #include #include "hamlib/rig.h" #include "parallel.h" #include "misc.h" #include "bandplan.h" #include "register.h" #include "flexradio.h" static int sdr1k_set_freq(RIG *rig, vfo_t vfo, freq_t freq); static int sdr1k_get_freq(RIG *rig, vfo_t vfo, freq_t *freq); static int sdr1k_reset(RIG *rig, reset_t reset); static int sdr1k_init(RIG *rig); static int sdr1k_open(RIG *rig); static int sdr1k_close(RIG *rig); static int sdr1k_cleanup(RIG *rig); static int sdr1k_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt); static int sdr1k_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val); typedef enum { L_EXT = 0, L_BAND = 1, L_DDS0 = 2, L_DDS1 = 3 } latch_t; #define TR 0x40 #define MUTE 0x80 #define GAIN 0x80 #define WRB 0x40 #define RESET 0x80 /* DDS Control Constants */ #define COMP_PD 0x10 /* DDS Comparator power down */ #define DIG_PD 0x01 /* DDS Digital Power down */ #define BYPASS_PLL 0x20 /* Bypass DDS PLL */ #define INT_IOUD 0x01 /* Internal IO Update */ #define OSK_EN 0x20 /* Offset Shift Keying enable */ #define OSK_INT 0x10 /* Offset Shift Keying */ #define BYPASS_SINC 0x40 /* Bypass Inverse Sinc Filter */ #define PLL_RANGE 0x40 /* Set PLL Range */ static int write_latch(RIG *rig, latch_t which, unsigned value, unsigned mask); static int dds_write_reg(RIG *rig, unsigned addr, unsigned data); static int set_bit(RIG *rig, latch_t reg, unsigned bit, unsigned state); #define DEFAULT_XTAL MHz(200) #define DEFAULT_PLL_MULT 1 #define DEFAULT_DAC_MULT 4095 struct sdr1k_priv_data { unsigned shadow[4]; /* shadow latches */ freq_t dds_freq; /* current freq */ freq_t xtal; /* base XTAL */ int pll_mult; /* PLL mult */ }; #define SDR1K_FUNC RIG_FUNC_MUTE #define SDR1K_LEVEL RIG_LEVEL_PREAMP #define SDR1K_PARM RIG_PARM_NONE #define SDR1K_MODES (RIG_MODE_NONE) #define SDR1K_VFO RIG_VFO_A #define SDR1K_ANTS 0 /* ************************************************************************* */ /* * http://www.flex-radio.com * SDR-1000 rig capabilities. * * * TODO: RIG_FUNC_MUTE, set_external_pin? * * def set_mute (self, mute = 1): * self.set_bit(1, 7, mute) * * def set_unmute (self): * self.set_bit(1, 7, 0) * * def set_external_pin (self, pin, on = 1): * assert (pin < 8 and pin > 0), "Out of range 1..7" * self.set_bit(0, pin-1, on) * * def read_input_pin * * set_conf(XTAL,PLL_mult,spur_red) * * What about IOUD_Clock? */ const struct rig_caps sdr1k_rig_caps = { .rig_model = RIG_MODEL_SDR1000, .model_name = "SDR-1000", .mfg_name = "Flex-radio", .version = "0.2", .copyright = "LGPL", .status = RIG_STATUS_UNTESTED, .rig_type = RIG_TYPE_TUNER, .targetable_vfo = 0, .ptt_type = RIG_PTT_RIG, .dcd_type = RIG_DCD_NONE, .port_type = RIG_PORT_PARALLEL, .has_get_func = SDR1K_FUNC, .has_set_func = SDR1K_FUNC, .has_get_level = SDR1K_LEVEL, .has_set_level = RIG_LEVEL_SET(SDR1K_LEVEL), .has_get_parm = SDR1K_PARM, .has_set_parm = RIG_PARM_SET(SDR1K_PARM), .chan_list = { RIG_CHAN_END, }, .scan_ops = RIG_SCAN_NONE, .vfo_ops = RIG_OP_NONE, .transceive = RIG_TRN_OFF, .attenuator = { RIG_DBLST_END, }, .preamp = { 14, RIG_DBLST_END, }, .rx_range_list1 = { { .startf = Hz(1), .endf = MHz(65), .modes = SDR1K_MODES, .low_power = -1, .high_power = -1, SDR1K_VFO }, RIG_FRNG_END, }, .tx_range_list1 = { /* restricted to ham band */ FRQ_RNG_HF(1, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS), FRQ_RNG_6m(1, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS), RIG_FRNG_END, }, .rx_range_list2 = { { .startf = Hz(1), .endf = MHz(65), .modes = SDR1K_MODES, .low_power = -1, .high_power = -1, SDR1K_VFO }, RIG_FRNG_END, }, .tx_range_list2 = { /* restricted to ham band */ FRQ_RNG_HF(2, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS), FRQ_RNG_6m(2, SDR1K_MODES, W(1), W(1), SDR1K_VFO, SDR1K_ANTS), RIG_FRNG_END, }, .tuning_steps = { {SDR1K_MODES, 1}, RIG_TS_END, }, .priv = NULL, /* priv */ .rig_init = sdr1k_init, .rig_open = sdr1k_open, .rig_close = sdr1k_close, .rig_cleanup = sdr1k_cleanup, .set_freq = sdr1k_set_freq, .get_freq = sdr1k_get_freq, .set_ptt = sdr1k_set_ptt, .reset = sdr1k_reset, .set_level = sdr1k_set_level, // .set_func = sdr1k_set_func, }; /* ************************************************************************* */ int sdr1k_init(RIG *rig) { struct sdr1k_priv_data *priv; priv = (struct sdr1k_priv_data *)malloc(sizeof(struct sdr1k_priv_data)); if (!priv) { /* whoops! memory shortage! */ return -RIG_ENOMEM; } priv->dds_freq = RIG_FREQ_NONE; priv->xtal = DEFAULT_XTAL; priv->pll_mult = DEFAULT_PLL_MULT; rig->state.priv = (void *)priv; return RIG_OK; } static void pdelay(RIG *rig) { unsigned char r; par_read_data(&rig->state.rigport, &r); /* ~1us */ } int sdr1k_open(RIG *rig) { struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv; priv->shadow[0] = 0; priv->shadow[1] = 0; priv->shadow[2] = 0; priv->shadow[3] = 0; sdr1k_reset(rig, 1); return RIG_OK; } int sdr1k_close(RIG *rig) { /* TODO: release relays? */ return RIG_OK; } int sdr1k_cleanup(RIG *rig) { struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv; if (priv) { free(priv); } rig->state.priv = NULL; return RIG_OK; } static int set_band(RIG *rig, freq_t freq) { int band, ret; /* set_band */ if (freq <= MHz(2.25)) { band = 0; } else if (freq <= MHz(5.5)) { band = 1; } else if (freq <= MHz(11)) { band = 3; /* due to wiring mistake on board */ } else if (freq <= MHz(22)) { band = 2; /* due to wiring mistake on board */ } else if (freq <= MHz(37.5)) { band = 4; } else { band = 5; } ret = write_latch(rig, L_BAND, 1 << band, 0x3f); rig_debug(RIG_DEBUG_VERBOSE, "%s %"PRIll" band %d\n", __func__, (int64_t)freq, band); return ret; } /* * set DDS frequency. * NB: due to spur reduction, effective frequency might not be the expected one */ int sdr1k_set_freq(RIG *rig, vfo_t vfo, freq_t freq) { struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv; int i; double ftw; double DDS_step_size; freq_t frqval; // why is spur_red always true? // int spur_red = 1; #define spur_red 1 int ret; ret = set_band(rig, freq); if (ret != RIG_OK) { return ret; } /* Calculate DDS step for spu reduction * DDS steps = 3051.7578125Hz */ DDS_step_size = ((double)priv->xtal * priv->pll_mult) / 65536; rig_debug(RIG_DEBUG_VERBOSE, "%s DDS step size %g %g %g\n", __func__, DDS_step_size, (double)freq / DDS_step_size, rint((double)freq / DDS_step_size)); // why is spur_red always true? if (spur_red) { frqval = (freq_t)(DDS_step_size * rint((double)freq / DDS_step_size)); } else { frqval = freq; } rig_debug(RIG_DEBUG_VERBOSE, "%s curr %"PRIll" frqval %"PRIll"\n", __func__, (int64_t)freq, (int64_t)frqval); if (priv->dds_freq == frqval) { return RIG_OK; } /*** */ ftw = (double)frqval / priv->xtal ; for (i = 0; i < 6; i++) { unsigned word; if (spur_red && i == 2) { word = 128; } else if (spur_red && i > 2) { word = 0; } else { word = (unsigned)(ftw * 256); ftw = ftw * 256 - word; } rig_debug(RIG_DEBUG_TRACE, "DDS %d [%02x]\n", i, word); ret = dds_write_reg(rig, 4 + i, word); if (ret != RIG_OK) { return ret; } } priv->dds_freq = frqval; return ret; } int sdr1k_get_freq(RIG *rig, vfo_t vfo, freq_t *freq) { struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv; *freq = priv->dds_freq; rig_debug(RIG_DEBUG_TRACE, "%s: %"PRIll"\n", __func__, (int64_t)priv->dds_freq); return RIG_OK; } /* Set DAC multiplier value */ static int DAC_mult(RIG *rig, unsigned mult) { rig_debug(RIG_DEBUG_TRACE, "DAC [%02x,%02x]\n", mult >> 8, mult & 0xff); /* Output Shape Key I Mult */ dds_write_reg(rig, 0x21, mult >> 8); dds_write_reg(rig, 0x22, mult & 0xff); /* Output Shape Key Q Mult */ dds_write_reg(rig, 0x23, mult >> 8); dds_write_reg(rig, 0x24, mult & 0xff); return RIG_OK; } int sdr1k_reset(RIG *rig, reset_t reset) { /* Reset all Latches (relays off) */ write_latch(rig, L_BAND, 0x00, 0xff); write_latch(rig, L_DDS1, 0x00, 0xff); write_latch(rig, L_DDS0, 0x00, 0xff); write_latch(rig, L_EXT, 0x00, 0xff); /* Reset DDS */ write_latch(rig, L_DDS1, RESET | WRB, 0xff); /* reset the DDS chip */ write_latch(rig, L_DDS1, WRB, 0xff); /* leave WRB high */ dds_write_reg(rig, 0x1d, COMP_PD); /* Power down comparator */ /* TODO: add PLL multiplier property and logic */ dds_write_reg(rig, 0x1e, BYPASS_PLL); /* Bypass PLL */ dds_write_reg(rig, 0x20, BYPASS_SINC | OSK_EN); /* Bypass Inverse Sinc and enable DAC */ DAC_mult(rig, DEFAULT_DAC_MULT); /* Set DAC multiplier value */ return RIG_OK; } int sdr1k_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt) { return set_bit(rig, L_BAND, 6, ptt == RIG_PTT_ON); } int sdr1k_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val) { rig_debug(RIG_DEBUG_TRACE, "%s: %s %d\n", __func__, rig_strlevel(level), val.i); switch (level) { case RIG_LEVEL_PREAMP: return set_bit(rig, L_EXT, 7, !(val.i == rig->caps->preamp[0])); break; default: return -RIG_EINVAL; } } int write_latch(RIG *rig, latch_t which, unsigned value, unsigned mask) { struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv; hamlib_port_t *pport = &rig->state.rigport; if (!(L_EXT <= which && which <= L_DDS1)) { return -RIG_EINVAL; } par_lock(pport); priv->shadow[which] = (priv->shadow[which] & ~mask) | (value & mask); par_write_data(pport, priv->shadow[which]); pdelay(rig); par_write_control(pport, 0x0F ^ (1 << which)); pdelay(rig); par_write_control(pport, 0x0F); pdelay(rig); par_unlock(pport); return RIG_OK; } int dds_write_reg(RIG *rig, unsigned addr, unsigned data) { #if 0 write_latch(rig, L_DDS1, addr & 0x3f, 0x3f); write_latch(rig, L_DDS0, data, 0xff); write_latch(rig, L_DDS1, 0x40, 0x40); write_latch(rig, L_DDS1, 0x00, 0x40); #else /* set up data bits */ write_latch(rig, L_DDS0, data, 0xff); /* set up address bits with WRB high */ //write_latch (rig, L_DDS1, addr & 0x3f, 0x3f); write_latch(rig, L_DDS1, WRB | addr, 0xff); /* send write command with WRB low */ write_latch(rig, L_DDS1, addr, 0xff); /* return WRB high */ write_latch(rig, L_DDS1, WRB, 0xff); #endif return RIG_OK; } int set_bit(RIG *rig, latch_t reg, unsigned bit, unsigned state) { unsigned val; val = state ? 1 << bit : 0; return write_latch(rig, reg, val, 1 << bit); }