Hamlib - (C) Frank Singleton 2000 (vk3fcs@ix.netcom.com) (C) Stephane Fillod 2000-2011 (C) The Hamlib Group 2000-2013 Take a look at http://sourceforge.net/projects/hamlib/ Here you will find a mail list, and the latest releases. See README for frontend/backend outline. See README.betatester for background on testing Hamlib. The library provides functions for both radio, rotator, and amplifier control, and data retrieval from the radio, rotator, or amplifier. A number of functions useful for calculating distance and bearing and grid square conversion are included. libhamlib.so - library that provides generic API for all RIG types. This is what Application programmers will "see". Will have different names on other platforms, e.g. libhamlib-2.dll on MS windows. Also contains all radio, rotator, and amplifier "backends" (formerly in their own dlopen'ed libraries) provided by Hamlib. Backend Examples are: --------------------- 1. yaesu will provide connectivity to Yaesu FT 747GX Transceiver, FT 847 "Earth Station", etc. via a standard API. 2. xxxx. will provide connectivity to the Wiz-bang moon-melter 101A (yikes..) Hamlib also enables developers to develop professional looking GUI's towards a standard control library API, and they would not have to worry about the underlying connection towards physical hardware. Serial (RS232) connectivity is built in as are RPC, IP (also via a socket utility), and USB. Other connectivity will follow afterwards. General Guidelines. ------------------- 0. The top level directory looks like this as of 2020-01-18 $ tree -d -I .git . ├── amplifiers │   └── elecraft ├── android ├── autom4te.cache ├── bindings ├── build-aux ├── c++ ├── doc │   ├── man1 │   └── man7 ├── dummy ├── extra │   ├── gnuradio │   └── kylix │   └── tests ├── include │   └── hamlib ├── lib ├── macros ├── perl ├── rigs │   ├── adat │   ├── alinco │   ├── aor │   ├── barrett │   ├── dorji │   ├── drake │   ├── elad │   ├── flexradio │   ├── icmarine │   ├── icom │   ├── jrc │   ├── kachina │   ├── kenwood │   ├── kit │   ├── lowe │   ├── pcr │   ├── prm80 │   ├── racal │   ├── rft │   ├── rs │   ├── skanti │   ├── tapr │   ├── tentec │   ├── tuner │   ├── uniden │   ├── winradio │   │   └── linradio │   ├── wj │   └── yaesu ├── rotators │   ├── amsat │   ├── ars │   ├── celestron │   ├── cnctrk │   ├── easycomm │   ├── ether6 │   ├── fodtrack │   ├── gs232a │   ├── heathkit │   ├── ioptron │   ├── m2 │   ├── meade │   ├── prosistel │   ├── rotorez │   ├── sartek │   ├── spid │   └── ts7400 │   └── include ├── scripts ├── src └── tests ├── config ├── rigctl.test ├── testbcd.test ├── testfreq.test └── testloc.test 77 directories 1. Building If you just want to recompile the library, please refer to the INSTALL file. This document introduces hacking the code of Hamlib. 1.1 Obtaining sources: git clone git clone git://git.code.sf.net/p/hamlib/code hamlib The clone has to only be done the first time. After the initial clone, whenever you want to update your local repository, issue the following command in the root directory of Hamlib: git pull This will download and merge any changes from the canonical Hamlib Git repository (what Git calls origin by default). This command actually combines two Git commands, fetch and merge into one that will first check for conflicting changes between your local repository and the remote (origin) repository and will not apply any changes if conflicts are found. A pull can be restricted to just a single branch if desired: git pull origin master 1.1.1 Obtaining more info on Git Check out the Source Forge page at https://sourceforge.net/scm/?type=git&group_id=8305 for more information about how to use the Git repository of Hamlib. Much documentation on Git exists. A good starting point is: http://git-scm.com/documentation From this page are links to tutorials, books (Pro Git proved useful for me), and references (http://gitref.org/ is another good resource). Another site: http://www-cs-students.stanford.edu/~blynn/gitmagic/ 1.1.2 Providing patches with Git Git provides tools to generate patches and submit them to the Hamlib developers via email. Use of these tools is preferred as Git allows credit to be given to the author and submitter of the patches. Please submit the patches to the hamlib-developer mailing list. See section 8.3. 1.1.3 Git and branches One of the most powerful features of Git is its ability to make working with branches easy. It also allows the developers to "cherry pick" patches from the master development branch into stable release branches. In this manner we can accomodate patches submitted against a stable release and merge them into master as well. Such parallel development is a new feature for our project and there will be a learning curve! After cloning the repository as above, the repository is synchronized with the "master" branch. This can be confirmed by 'git branch'. A new branch can be created by providing a name, 'git branch n0nb_k3_level' which will now exist as a branch in your local repository. This is a good way to work on new features as Git keeps changes to files in each branch separate. As you can see: $ git branch Hamlib-1.2.13 Hamlib-1.2.13.1 * master n0nb_k3 there are a number of branches in my local repository. Most, such as "Hamlib-1.2.13", exist in the canonical repository as well. They can be seen by 'git branch -r' and you can switch to any of them using the 'git checkout BRANCH_NAME' command. Finally, once your changes are ready for inclusion in Hamlib, commit your changes to the branch you are working in, checkout the master branch, and use 'git merge' to synchronize your changes into the master branch. Lastly, push your changes to the canonical repository (developer write access and checkout using the SSH protocol required. See https://sourceforge.net/scm/?type=git&group_id=8305) or email them to hamlib-developer@lists.sourceforge.net for inclusion into Hamlib. 1.1.4 Summary This is a very brief introduction to Git for Hamlib developers. Day-to-day Git usage involves a handful of commands--clone, status, commit, pull, branch, checkout, merge, and push are probably the most common. Other useful commands are log and diff to see changes (especially when color output is enabled in your Git configuration). See the references above to learn about setting up Git to your preference. If you like a GUI tool several exist. Gitk and Gitg are similar with the former being written with the Tk toolkit and the latter in GTK+. Another is Giggle with its own interface. All allow looking at the complete history of the repository and changes made to any file. 1.2. Requirements Hamlib is entirely developed using GNU tools, under various Linux systems. Note that Hamlib is not restricted to Linux systems. We welcome anyone who has access to a POSIXish system to port Hamlib. Contact us for help. That is, if you want to take part in the development of Hamlib, you'll need the following tools. Make sure you have at least the required version or you won't even be able to build from the Git clone. N.B. The Debian and derivatives (Ubuntu and friends) 'build-essentials' package will install a number of tools and minimize the number of packages that need to be installed manually (Debian package names are listed, other distributions may differ). * Gnu C or any C99 compliant compiler # gcc --version * Gnu make (or any modern one, BSD okay) # make --version * autoconf 2.67 # autoconf --version * automake 1.11 # automake --version * libtool 2.2.6b+ # libtool --version * Git for connection to git.code.sf.net/p/hamlib/code N.B. Hamlib requires libtool >= 2.2.6b in compliance with CVE-2009-3736. Optional, but highly recommended: * GNU C++ # g++ --version * swig (for bindings) 1.3.14 # swig -version * perl devel # h2xs * tcl devel # tcltk-depends * python devel # python-config * libxml2 devel # xml2-config --version * libgd2 devel # gdlib-config --version * libusb-1.0 devel # 1.0.0 or newer * libreadline devel # ver 5.2 or newer * pkg-config 0.9.0 # pkg-config --version (libxml and USRP) N.B.: The libusb-1.0 package is required for building most of the 'kit' backend. The older version of libusb 0.1.x is no longer supported. Documentation: * Doxygen N.B.: Some systems can have several versions of the autotools installed. In that case, autoconf may be called "autoconf2.59", autoheader "autoheader2.59", and automake "automake-1.9", aclocal "aclocal-1.9" or a newer version. IMPORTANT: If autoconf or automake are installed on your system, make sure they are matching *at least* the version shown above. 1.3. configure and build stage It is important to note that the Git repository holds no Autotools generated files, i.e. configure, config.guess, Makefile, etc. Hence after a fresh checkout, you'll have to generate those files. To proceed, first edit the bootstrap script, and set appropriately the AUTORECONF, AUTOMAKE, and LIBTOOLIZE variables with the required versions seen in the previous section (most systems will be fine with the default names, only do this if a problem arises and please let us know). cd hamlib ./bootstrap ./configure [CFLAGS="-g -O0"] make make install Note: Depending on the value of '--prefix' passed to 'configure', superuser (root) privileges may be needed for 'make install'. If you don't want the build files cluttering the source directories, do the following in the same parent directory of hamlib: mkdir build && cd build ../hamlib/bootstrap ../hamlib/configure [CFLAGS="-g -O0"] make make install Note: In the examples above, passing the CFLAGS environment variable is optional as shown using the square brackets.. This will keep the binary output files separate from the source tree and aid in development by reducing clutter in the source tree. Once you've run 'bootstrap', make sure you've got some recent config.guess and config.sub (needed to guess your system type). Anything of at least year 2004 should be fine, unless you run some exotic hardware/software system (modern Linux distributions and Cygwin keep these up to date): ./config.guess --version ./config.sub --version The '--prefix' option to 'configure' is optional and not shown as it defaults to /usr/local. Convention is that locally built packages be installed in /usr/local away from distribution installed packages. The 'CFLAGS="-g -O0"' environment variable generates less optimized binaries with the '-O0' while the '-g' option adds debugging info which can be changed to -ggdb to generate debugging info for gdb. Additionally, you may want to add the '--with-perl-binding' or '--with-python-binding' or '--with-tcl-binding' or '--with-lua-binding' if you are interested in SWIG binding support for those scripting languages. For LUA bindinds if you run "lua luatest.lua" and see this error message: luatest.lua:44: Error in Rig::set_mode (arg 2), expected 'rmode_t' got 'string' This means you need to upgrade both swig and lua for 64-bit lua support This is known to work on swig 4.0.1 and lua 5.3.5 NOTE: The bootstrap script has only to be run the first time after a fresh checkout or when a Makefile.am or other build file is modified or added. For a Tcl build, add this if needed: --with-tcl=/usr/lib/tcl8.2 Note: C-shell users may have to run bootstrap and make through a bourne shell instead, or pass "SHELL=bash" as a parameter to make. Some basic testing is accomplished with the 'make check' target which will run a few predetermined tests using the 'dummy' (rig model 1) backend and some other Hamlib functions in the build tree. This is a basic sanity check and cannot test all backends. Likewise, a complete test of the build system is accomplished with 'make distcheck' which exercises a complete build sequence from creating a distribution tarball, building, installing, uninstalling, and cleaning Hamlib. All packages listed above except for Swig and Doxygen are required for this target as neither the bindings or old documentation are generated in a default build. NOTE! If Hamlib has not been previously installed as a locally built package you will need to make sure that 'ldconfig' is configured correctly and run periodically after 'make install'. Most modern distributions have an /etc/ld.so.conf.d/ directory where local configuration can be made. Later versions of Debian and derivatives have a file named 'libc.conf' in this directory. The contents of libc.conf are: # libc default configuration /usr/local/lib If your system does not have such a file, one will need to be created and then 'ldconfig' will need to be run as the root user so that applications using the Hamlib libraries can find them. 1.4. Feedback The Hamlib team is very interested to hear from you, how Hamlib builds and works on your system, especially on non-Linux or non-PC systems. We are trying to make Hamlib as portable as possible. Please report problems to our developer mailing list, hamlib-developer@lists.sourceforge.net Patches are welcome too! Just send them to the mailing list. Git formatted patches are preferred. Unified diff format (diff -u) is also welcome. Patches should apply to the current Git master branch or a testing branch, if possible. If you're patching against an older released version of Hamlib, we can take those as well but please document the release the diff is generated against. So far, Hamlib has been tested successfully under the following systems: (if your system is not present, please report to the mailing list) * Debian i386 (plus derivatives--Ubuntu, etc.) * Debian sid mipsel * Raspbian armhf (Raspberry Pi Debian derivative) * RedHat i386 * Linux ppc * Slackware i386 * FreeBSD & NetBSD * Solaris 2.6 * Mac OS X * MS Windows: Cygwin, Mingw 2. How to add a new backend The rule is one backend per protocol family. Try to share code between rigs of the same family, if applicable. The steps in Section 3 below will need to be followed as well. Version numbers used are in the form YYYYMMDD.N where the .N is intended for multiple versions in one day....so typically would be .0 2.1. mkdir mybackend Create a new subdir, of the name of the protocol backend. NB: the directory MUST be the same as the backend name. 2.2. Add to the DIST_SUBDIRS variable in the topdir Makefile.am (not needed for rotators) 2.3. Add the backend name to the BACKEND_LIST variable (add to ROT_BACKEND_LIST for a new rotor backend or to AMP_BACKEND_LIST for a new amplifier) in configure.ac. 2.4. Add "mybackend/Makefile" in the AC_CONFIG_FILES macro at the bottom of configure.ac. 2.5. Add DEFINE_INITRIG_BACKEND(mybackend); to the end of the existing list in src/register.c or, for a new rotor backend, add DEFINE_INITROT_BACKEND(myrotbackend); to src/rot_reg.c. 2.6. Add { RIG_MYBACKEND, RIG_BACKEND_MYBACKEND, RIG_FUNCNAM(mybackend) }, to the rig_backend_list structure in src/register.c or, add { ROT_MYROTBACKEND, ROT_BACKEND_MYROTBACKEND, ROT_FUNCNAMA(myrotbackend) }, to the rot_backend_list structure in src/rot_reg.c. { AMP_MYAMPBACKEND, AMP_BACKEND_MYAMPBACKEND, AMP_FUNCNAMA(myaotbackend) }, to the aot_backend_list structure in src/amp_reg.c. 2.7. Add the new backend to include/hamlib/riglist.h or include/hamlib/rotlist.h or include/hamlib/amplist.h by selecting the next higher backend ID number. 2.8. Create mybackend/Makefile.am, mybackend.c mybackend.h Use 'dummy' backend as a template. Here are commands for the bourne shell: $ automake mybackend/Makefile $ CONFIG_HEADERS= CONFIG_LINKS= CONFIG_FILES=mybackend/Makefile ./config.status make in topdir to rebuild all 2.9. Commit your work to your local repository. (developer access to Hamlib Git required for pushing to the canonical Hamlib repository (origin)) Provide patches to the mailing list: (Please let N0NB know if the commands below are incorrect) $ git status # Show uncommitted/staged/unstaged files $ git add mybackend $ cd mybackend (The following command might not be necessary) $ git add Makefile.am mybackend.c mybackend.h While specifying each file individually as above allows for fine- grained control, git offers a wildcard shortcut to add all new files: $ git add . Be careful! If you have other files that were created as part of the build process, this command will add them too unless they match a pattern in .gitignore. Always check with 'git status' first! $ git commit -m "Initial release" Makefile.am mybackend.c mybackend.h Note: The '-m' switch passes a short message to the Git repository upon a commit. If a longer message is desired, do not use the '-m' option. The editor specified in the EDITOR or VISUAL environment variables will be started where a more detailed message may be composed. 2.10 If you have developer access to the Git repository hosted at Source Forge, you can do the following: $ git push origin Your changes will now be available to others. 3. How to add a new model to an existing backend 3.1. make sure there's already a (unique) ID for the model to be added in include/hamlib/riglist.h or include/hamlib/rotlist.h or include/hamlib/amplist.h 3.2. locate the existing backend 3.3. Clone the most similar model in the backend 3.4. Add the new C file to the _SOURCES variable of the backend's Makefile.am 3.5. Add "extern const struct rig_caps _caps;" to mybackend.h 3.6. In initrigs_ of mybackend.c, add "rig_register(&_caps);" 3.7. Run 'make' if you have dependencies, or the following to regenerate the makefile: $ automake mybackend/Makefile $ CONFIG_HEADERS= CONFIG_LINKS= CONFIG_FILES=mybackend/Makefile ./config.status Run 'make' in topdir to rebuild all. 3.8. Commit your work (once tests are satisfactory): $ git add . $ git commit -m "added to ". Note: See Note in section 2.6 above. Note: The '.' character is a Git wildcard that includes all new and modified files in your working tree. The '-m' option may be ommitted, in which case Git will start your default editor for a longer commit message. Commit messages generally have the form of a short subject line, then a blank line, and then as much text (broken into paragraphs as needed) as needed for a good decription of the commit. Assuming your working tree was cloned from the SF.net repository or N0NB's GitHub repository, you can now issue a pull request inclusion of your new model into Hamlib. 4. Read README.betatester to test the new backend/model. Report to mailing list. 5. Basic functions: set/get_freq, set/get_mode, and set/get_vfo would be a good starting point for your new backend. 6. C code examples. A C code snippet to connect to a FT847 and set the frequency of the main VFO to 439,700,000 Hz, using FM as the required mode, would look something like this. The error checking is removed for simplicity. See tests/testrig.c 7. Where are the GUI's? "Build it and they will come ..." Seriously, I am hoping the API's will provide a solid framework for some cool GUI development. I would like to see some GTK or Qt apps that use the hamlib API's so they can be used by end users as a nice part of the Ham shack. Starting points (not exhaustive): Fldigi, CQRlog, gmfsk, gpredict, grig, klog, kontakt, ktrack, xlog 8. Contributing code 8.1 License Contributed code to the Hamlib frontend must be released under the LGPL. Contributed code to Hamlib backends must follow backend current license. Needless to say, the LGPL is the license of choice. End user applications like rigctl, rotctl, ampctl and networked daemons should be released under the GPL, so any contributed code must follow the license. 8.2 Coding guidelines and style For specific requirements for formatting the C source code, see README.coding_style. Any header files included from the hamlib/ directory should be enclosed in '<>': #include # Per GNU GCC documentation Other included header files (backend and rig specific headers) should be enclosed in "": #include "yaesu.h" Contributed code should always keep the source base in a compilable state, and not regress unless stated otherwise. There's no need to tag the source in a patch with your name in comments behind each modification, we already know the culprit from commit logs (also see "git blame"). :-) Patches should take portability issues into account. Keep in mind Hamlib has to run under: * various Linux's * NetBSD, FreeBSD * MacOS X * Windows: MinGW/Cygwin, and VisualC++ support for rig.h Hamlib should also compile with the following common compilers: * gcc-3.0 and gcc-3.2+ (nearly deprecated?) * gcc-4.x and newer * in shared and static * C++ compiler against rig.h, riglist.h, rotator.h, amplifier.h * clang compiler Portability issues to watch: * C99 is probably (in 2016) a reasonable target * little vs. big endian systems (use shifts or adhoc functions) * 64 bit int: avoid them in API * printf/scanf of 64bit int: use PRIll (cast value to int64_t) and SCNll * printf/scanf of freq_t: use PRIfreq and SCNfreq Testing: * The acid test for the build system is 'make distcheck' which will make a distribution tarball, extract, configure, and build it in a subdirectory, run 'make check', install it, uninstall it, and clean it up. When all those tests pass, the GNU build system declares the package ready for distribution. This is a good test if you have touched the build system files or added a backend. 8.2.1 Use of rig_debug() function Hamlib provides a debugging aid in the form of the rig_debug() function, It is essentially a wrapper around printf() and takes many of the same flags and conversion specifiers as the C library's various printf() functions. It adds an additional parameter for specifying the desired debug level for the output string. Six levels of debugging are defined in include/hamlib/rig.h and they are: NONE No bug reporting BUG Serious bug ERR Error case (e.g. protocol, memory allocation) WARN Warning VERBOSE Verbose TRACE Tracing They correspond to the use of the -v switch (from no -v switch to -vvvvv) to rigctl's command line. Hamlib applications can also set the debug level via the Hamlib API. From an application's perspective, setting a specific level includes all messages at that level and all at any lower level. In the library, passing RIG_DEBUG_ERR to rig_debug() limits display of that message to a level setting of ERR or any higher level. In this case if the application sets the message level to RIG_DEBUG_INFO, the message will not be seen. Use of a given level can show the value of a critical variable without the need of a TRACE level message where it can get lost in the stream of output produced by low-level Hamlib functions. Here are my (N0NB's) suggested use of rig_debug() levels in backends. * Many backend functions should have an initial call to rig_debug() as follows: rig_debug(RIG_DEBUG_VERBOSE, "%s() entered\n", __func__); The use of RIG_DEBUG_VERBOSE allows tracking the chain of function calls through the backend while still keeping rigctl's output mostly uncluttered by use of the -vvvv switch. * Developers will want to call rig_debug() to display values of critical variable(s) in a backend function. For this RIG_DEBUG_VERBOSE (rigctl -vvvv) should be a good choice as the output won't be lost in the stream of RIG_DEBUG_TRACE (rigctl -vvvvv) level output by various low-level Hamlib functions. It will also match the display of the values of critical variable(s) with the function calls as above. * Use RIG_DEBUG_TRACE when it makes sense to see the variable(s) in the context of a lot of low-level debugging output (rigctl -vvvvv). * Lower levels (BUG, ERR, and WARN) should be used where it makes sense that information be printed when the user selects less verbosity. Use sparingly. Many backends do not conform to this suggestion at the moment. The use of the RIG_DEBUG_LEVEL values has been somewhat haphazard (at least by this scribe) so fixing these when working in a given backend is encouraged. If an application sets the debugging level to RIG_DEBUG_NONE, then rig_debug() functions will produce no output. Therefore rig_debug() cannot be counted on to output a message in all runtime cases. The debugging levels may be an area for consideration in Hamlib 3. 8.3 Submitting patches Git provides tools to generate patches and submit them to the Hamlib developers via email. Use of these tools is preferred as Git allows credit to be given to the author and submitter of the patches. Alternately, patches can be submitted in unified format (diff -u), against the Git master branch or a given release (please note well which one!). Both formats make patches easily readable. The patches are to be sent to the hamlib-developer mailing list (hamlib-developer@lists.sourceforge.net). If the file is too big, you can send it as a compressed attachment. 8.3.1 Changelog A ChangeLog file is no longer manually maintained. At some point it may be automatically generated from the Git commit log for source tarballs. Simply summarize your changes when the files are committed to Git or, if providing patches to the mailing list, provide a summary so the uploader can include it in the commit message which will show in the commit log (Git formatted emails will include this already). 8.4 Git commit access Generally, volunteers can get commit access to the SourceForge Hamlib Git repository upon asking one of the project administrators. Sometimes we'll ask you! However, before your start committing, the project admins would like first to have a look at your "style", just to make sure you grok the Hamlib approach (c.f. previous section on submitting a patch). Then you'll be able to commit by yourself to the backend you chose to maintain. Please follow the rules hereunder: * Always keep the Git repository (all branches) in a compilable state. * Follow the coding guidelines * Touching the frontend (files in src/ and include/hamlib) always requires discussion beforehand on the hamlib-developer list. * Announce on the hamlib-developer list if you're about to do serious maintainance work Thanks for contributing and have fun! Stephane Fillod f8cfe and The Hamlib Group