/* * Hamlib Rotator backend - M2 RC2800 * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include "hamlib/rotator.h" #include "serial.h" #include "misc.h" #include "register.h" #include "num_stdio.h" #include "rc2800.h" #define CR "\r" #define LF "\x0a" #define BUFSZ 128 /* The continuous output of some of the RC2800 models can be a nuisance. Even if we flush the input stream before sending the command, there may be partial sentence in the stream ahead of the data we want. */ /* rc2800_parse Parse output from the rotator controller We want to recognize the following sentences: A ERR= E ERR= A P= S= E P= S= A= S= E= S= */ static int rc2800_parse(char *s, char *device, float *value) { int msgtype = 0, errcode = 0; int len; rig_debug(RIG_DEBUG_TRACE, "%s: device return->%s", __func__, s); len = strlen(s); if (len == 0) { return -RIG_EPROTO; } if (len > 7) { if (*s == 'A' || *s == 'E') { int i; *device = *s; if (!strncmp(s + 2, "ERR=", 4)) { msgtype = 1; i = sscanf(s + 6, "%d", &errcode); if (i == EOF) { return -RIG_EINVAL; } } else if (!strncmp(s + 2, "P=", 2)) { msgtype = 2; i = num_sscanf(s + 5, "%f", value); if (i == EOF) { return -RIG_EINVAL; } } else if (s[1] == '=') { msgtype = 2; i = num_sscanf(s + 2, "%f", value); if (i == EOF) { return -RIG_EINVAL; } } } } if (msgtype == 2) { rig_debug(RIG_DEBUG_TRACE, "%s: device=%c value=%3.1f\n", __func__, *device, *value); return RIG_OK; } else if (msgtype == 1) { rig_debug(RIG_DEBUG_TRACE, "%s: driver error code %d\n", __func__, errcode); *device = ' '; return RIG_OK; } return -RIG_EPROTO; } #if 0 int testmain() { rc2800_parse("A P= 98.1 S=9 MV"); rc2800_parse("A P= 100.0 S=9 MV"); rc2800_parse("E=43.7 S=9 M"); rc2800_parse("E=42.8 S=9 S"); rc2800_parse("E ERR=05"); return 0; } #endif /** * rc2800_transaction * * cmdstr - Command to be sent to the rig. * data - Buffer for reply string. Can be NULL, indicating that no reply is * is needed, but answer will still be read. * data_len - in: Size of buffer. It is the caller's responsibily to provide * a large enough buffer for all possible replies for a command. * * returns: * RIG_OK - if no error occurred. * RIG_EIO - if an I/O error occurred while sending/receiving data. * RIG_ETIMEOUT - if timeout expires without any characters received. */ static int rc2800_transaction(ROT *rot, const char *cmdstr, char *data, size_t data_len) { struct rot_state *rs; int retval; int retry_read = 0; char replybuf[BUFSZ]; rs = &rot->state; transaction_write: rig_flush(&rs->rotport); if (cmdstr) { retval = write_block(&rs->rotport, (unsigned char *) cmdstr, strlen(cmdstr)); if (retval != RIG_OK) { goto transaction_quit; } } /* Always read the reply to know whether the cmd went OK */ if (!data) { data = replybuf; } if (!data_len) { data_len = BUFSZ; } /* then comes the answer */ memset(data, 0, data_len); retval = read_string(&rs->rotport, (unsigned char *) data, data_len, CR, strlen(CR), 0, 1); // some models seem to echo -- so we'll check and read again if echoed if (cmdstr && strcmp(data, cmdstr) == 0) { memset(data, 0, data_len); retval = read_string(&rs->rotport, (unsigned char *) data, data_len, CR, strlen(CR), 0, 1); } if (retval < 0) { if (retry_read++ < rot->state.rotport.retry) { goto transaction_write; } goto transaction_quit; } retval = RIG_OK; transaction_quit: return retval; } static int rc2800_rot_set_position(ROT *rot, azimuth_t az, elevation_t el) { char cmdstr[64]; int retval1, retval2 = RIG_OK; rig_debug(RIG_DEBUG_TRACE, "%s called: %f %f\n", __func__, az, el); if (rot->caps->rot_model == ROT_MODEL_RC2800_EARLY_AZ) { // we only do azimuth and this is the old protocol // we have to switch modes and then send azimuth // an extra CR gives us a response to expect num_sprintf(cmdstr, "A\r%.0f\r\r", az); } else { // does the new protocol use decimal points? // we'll assume no for now num_sprintf(cmdstr, "A%0f"CR, az); } retval1 = rc2800_transaction(rot, cmdstr, NULL, 0); if (rot->caps->rot_type == ROT_TYPE_AZIMUTH) { return retval1; } /* do not overwhelm the MCU? */ hl_usleep(200 * 1000); if (rot->caps->rot_model == ROT_MODEL_RC2800_EARLY_AZEL) { // this is the old protocol // we have to switch modes and then send azimuth // an extra CR gives us a response to expect num_sprintf(cmdstr, "E\r%.0f\r\r", el); } else { num_sprintf(cmdstr, "E%.0f"CR, el); } retval2 = rc2800_transaction(rot, cmdstr, NULL, 0); if (retval1 == retval2) { return retval1; } return (retval1 != RIG_OK ? retval1 : retval2); } static int rc2800_rot_get_position(ROT *rot, azimuth_t *az, elevation_t *el) { char posbuf[32]; int retval; char device; float value; rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__); *el = 0; retval = rc2800_transaction(rot, "A" CR, posbuf, sizeof(posbuf)); if (retval != RIG_OK || strlen(posbuf) < 5) { return retval < 0 ? retval : -RIG_EPROTO; } if (rc2800_parse(posbuf, &device, &value) == RIG_OK) { if (device == 'A') { *az = (azimuth_t) value; } else { return -RIG_EPROTO; } } if (rot->caps->rot_model == ROT_MODEL_RC2800) { retval = rc2800_transaction(rot, "E" CR, posbuf, sizeof(posbuf)); if (retval != RIG_OK || strlen(posbuf) < 5) { return retval < 0 ? retval : -RIG_EPROTO; } if (rc2800_parse(posbuf, &device, &value) == RIG_OK) { if (device == 'E') { *el = (elevation_t) value; } else { return -RIG_EPROTO; } } rig_debug(RIG_DEBUG_TRACE, "%s: (az, el) = (%.1f, %.1f)\n", __func__, *az, *el); } else { rig_debug(RIG_DEBUG_TRACE, "%s: (az) = (%.1f)\n", __func__, *az); } return RIG_OK; } static int rc2800_rot_stop(ROT *rot) { int retval; rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__); /* TODO: check each return value (do we care?) */ /* Stop AZ*/ retval = rc2800_transaction(rot, "A" CR, NULL, 0); /* select AZ */ if (retval != RIG_OK) { rig_debug(RIG_DEBUG_VERBOSE, "%s: A command failed?\n", __func__); } retval = rc2800_transaction(rot, "S" CR, NULL, 0); /* STOP */ if (retval != RIG_OK) { rig_debug(RIG_DEBUG_VERBOSE, "%s: az S command failed?\n", __func__); } if (rot->caps->rot_type == ROT_TYPE_AZIMUTH) { return retval; } /* do not overwhelm the MCU? */ hl_usleep(200 * 1000); /* Stop EL*/ retval = rc2800_transaction(rot, "E" CR, NULL, 0); /* select EL */ if (retval != RIG_OK) { rig_debug(RIG_DEBUG_VERBOSE, "%s: E command failed?\n", __func__); } retval = rc2800_transaction(rot, "S" CR, NULL, 0); /* STOP */ if (retval != RIG_OK) { rig_debug(RIG_DEBUG_VERBOSE, "%s: el S command failed?\n", __func__); } return retval; } /* ************************************************************************* */ /* * M2 RC2800 rotator capabilities. * * Protocol documentation: http://www.confluentdesigns.com/files/PdfFiles/devguide_24.pdf */ const struct rot_caps rc2800_rot_caps = { ROT_MODEL(ROT_MODEL_RC2800), .model_name = "RC2800", .mfg_name = "M2", .version = "20210129", .copyright = "LGPL", .status = RIG_STATUS_STABLE, .rot_type = ROT_TYPE_AZEL, .port_type = RIG_PORT_SERIAL, .serial_rate_min = 9600, .serial_rate_max = 9600, .serial_data_bits = 8, .serial_stop_bits = 1, .serial_parity = RIG_PARITY_NONE, .serial_handshake = RIG_HANDSHAKE_NONE, .write_delay = 0, .post_write_delay = 0, .timeout = 1000, .retry = 3, .min_az = 0.0, .max_az = 360.0, .min_el = 0.0, .max_el = 180.0, .get_position = rc2800_rot_get_position, .set_position = rc2800_rot_set_position, .stop = rc2800_rot_stop, }; // below tested on RC2800P-A const struct rot_caps rc2800az_rot_caps = { ROT_MODEL(ROT_MODEL_RC2800_EARLY_AZ), .model_name = "RC2800_EARLY_AZ", .mfg_name = "M2", .version = "20201130", .copyright = "LGPL", .status = RIG_STATUS_STABLE, .rot_type = ROT_TYPE_AZIMUTH, .port_type = RIG_PORT_SERIAL, .serial_rate_min = 9600, .serial_rate_max = 9600, .serial_data_bits = 8, .serial_stop_bits = 1, .serial_parity = RIG_PARITY_NONE, .serial_handshake = RIG_HANDSHAKE_NONE, .write_delay = 0, .post_write_delay = 0, .timeout = 1000, .retry = 3, .min_az = 0.0, .max_az = 360.0, .min_el = 0.0, .max_el = 180.0, .get_position = rc2800_rot_get_position, .set_position = rc2800_rot_set_position, .stop = rc2800_rot_stop, }; const struct rot_caps rc2800azel_rot_caps = { ROT_MODEL(ROT_MODEL_RC2800_EARLY_AZEL), .model_name = "RC2800_EARLY_AZEL", .mfg_name = "M2", .version = "20201130", .copyright = "LGPL", .status = RIG_STATUS_STABLE, .rot_type = ROT_TYPE_AZEL, .port_type = RIG_PORT_SERIAL, .serial_rate_min = 9600, .serial_rate_max = 9600, .serial_data_bits = 8, .serial_stop_bits = 1, .serial_parity = RIG_PARITY_NONE, .serial_handshake = RIG_HANDSHAKE_NONE, .write_delay = 0, .post_write_delay = 0, .timeout = 1000, .retry = 3, .min_az = 0.0, .max_az = 360.0, .min_el = 0.0, .max_el = 180.0, .get_position = rc2800_rot_get_position, .set_position = rc2800_rot_set_position, .stop = rc2800_rot_stop, }; /* ************************************************************************* */ DECLARE_INITROT_BACKEND(m2) { rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__); rot_register(&rc2800_rot_caps); rot_register(&rc2800az_rot_caps); rot_register(&rc2800azel_rot_caps); return RIG_OK; } /* ************************************************************************* */ /* end of file */