work based on Gerald's CRig.cls

git-svn-id: https://hamlib.svn.sourceforge.net/svnroot/hamlib/trunk@1560 7ae35d74-ebe9-4afe-98af-79ac388436b8
Hamlib-1.2.0
Stéphane Fillod, F8CFE 2003-10-07 22:21:57 +00:00
rodzic 2acf79bcee
commit 9052ad41c0
1 zmienionych plików z 162 dodań i 53 usunięć

Wyświetl plik

@ -2,7 +2,7 @@
* Hamlib Rotator backend - SDR-1000
* Copyright (c) 2003 by Stephane Fillod
*
* $Id: sdr1k.c,v 1.2 2003-09-28 15:36:57 fillods Exp $
* $Id: sdr1k.c,v 1.3 2003-10-07 22:21:57 fillods Exp $
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License as
@ -27,9 +27,7 @@
#include <stdlib.h>
#include <string.h> /* String function definitions */
#include <unistd.h> /* UNIX standard function definitions */
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#include <math.h>
#include "hamlib/rig.h"
#include "serial.h"
@ -50,16 +48,36 @@ static int sdr1k_set_ptt (RIG *rig, vfo_t vfo, ptt_t ptt);
typedef enum { L_EXT = 0, L_BAND = 1, L_DDS0 = 2, L_DDS1 = 3 } latch_t;
static void write_latch (RIG *rig, latch_t which, int value, int mask);
static void write_reg (RIG *rig, int addr, int data);
static void set_bit (RIG *rig, latch_t reg, int bit, int state);
#define TR 0x40
#define MUTE 0x80
#define GAIN 0x80
#define WRB 0x40
#define RESET 0x80
/* DDS Control Constants */
#define COMP_PD 0x10 /* DDS Comparator power down */
#define DIG_PD 0x01 /* DDS Digital Power down */
#define BYPASS_PLL 0x20 /* Bypass DDS PLL */
#define INT_IOUD 0x01 /* Internal IO Update */
#define OSK_EN 0x20 /* Offset Shift Keying enable */
#define OSK_INT 0x10 /* Offset Shift Keying */
#define BYPASS_SINC 0x40 /* Bypass Inverse Sinc Filter */
#define PLL_RANGE 0x40 /* Set PLL Range */
static int write_latch (RIG *rig, latch_t which, unsigned value, unsigned mask);
static int dds_write_reg (RIG *rig, unsigned addr, unsigned data);
static int set_bit (RIG *rig, latch_t reg, unsigned bit, unsigned state);
#define DEFAULT_XTAL MHz(200)
#define DEFAULT_PLL_MULT 1
#define DEFAULT_DAC_MULT 4095
struct sdr1k_priv_data {
int shadow[4]; /* shadow latches */
unsigned shadow[4]; /* shadow latches */
freq_t dds_freq; /* current freq */
freq_t xtal; /* base XTAL */
int pll_mult; /* PLL mult */
};
@ -95,14 +113,18 @@ struct sdr1k_priv_data {
* assert (pin < 8 and pin > 0), "Out of range 1..7"
* self.set_bit(0, pin-1, on)
*
* set_conf(XTAL)
* def read_input_pin
*
* set_conf(XTAL,PLL_mult,spur_red)
*
* What about IOUD_Clock?
*/
const struct rig_caps sdr1k_rig_caps = {
.rig_model = RIG_MODEL_SDR1000,
.model_name = "SDR-1000",
.mfg_name = "Flex-radio",
.version = "0.1.1",
.version = "0.1.2",
.copyright = "LGPL",
.status = RIG_STATUS_NEW,
.rig_type = RIG_TYPE_TUNER,
@ -124,7 +146,7 @@ const struct rig_caps sdr1k_rig_caps = {
.vfo_ops = RIG_OP_NONE,
.transceive = RIG_TRN_OFF,
.attenuator = { RIG_DBLST_END, },
.preamp = { 20, RIG_DBLST_END, },
.preamp = { 14, RIG_DBLST_END, },
.rx_range_list1 = { {.start=Hz(1),.end=MHz(65),.modes=SDR1K_MODES,
.low_power=-1,.high_power=-1,SDR1K_VFO},
@ -187,8 +209,9 @@ int sdr1k_init(RIG *rig)
return -RIG_ENOMEM;
}
rig->state.current_freq = RIG_FREQ_NONE;
priv->dds_freq = RIG_FREQ_NONE;
priv->xtal = DEFAULT_XTAL;
priv->pll_mult = DEFAULT_PLL_MULT;
rig->state.priv = (void*)priv;
@ -197,7 +220,8 @@ int sdr1k_init(RIG *rig)
static void pdelay(RIG *rig)
{
usleep(1);
unsigned char r;
par_read_data(&rig->state.rigport, &r); /* ~1us */
}
int sdr1k_open(RIG *rig)
@ -211,15 +235,12 @@ int sdr1k_open(RIG *rig)
sdr1k_reset(rig, 1);
write_latch (rig, L_DDS1, 0x00, 0xC0); /* Reset low, WRS/ low */
write_reg (rig, 0x20, 0x40);
return RIG_OK;
}
int sdr1k_close(RIG *rig)
{
/* place holder.. */
/* TODO: release relays? */
return RIG_OK;
}
@ -236,11 +257,9 @@ int sdr1k_cleanup(RIG *rig)
return RIG_OK;
}
int sdr1k_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
static int set_band(RIG *rig, freq_t freq)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
int i, band;
double ftw;
int band, ret;
/* set_band */
if (freq <= MHz(2.25))
@ -256,65 +275,136 @@ int sdr1k_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
else
band = 5;
ret = write_latch (rig, L_BAND, 1 << band, 0x3f);
rig_debug(RIG_DEBUG_VERBOSE, "%s %lld band %d\n", __FUNCTION__, freq, band);
write_latch (rig, L_BAND, 1 << band, 0x3f);
return ret;
}
ftw = (double)freq / priv->xtal ;
/*
* set DDS frequency.
* NB: due to spur reduction, effective frequency might not be the expected one
*/
int sdr1k_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
int i;
double ftw;
double DDS_step_size;
freq_t frqval;
int spur_red = 1;
int ret;
for (i = 0; i<6; i++) {
int word;
ret = set_band(rig, freq);
if (ret != RIG_OK)
return ret;
word = (int)(ftw * 256);
ftw = ftw*256 - word;
rig_debug(RIG_DEBUG_TRACE, "DDS %d [%02x]\n", i, word);
write_reg (rig, 4+i, word);
/* Calculate DDS step for spu reduction
* DDS steps = 3051.7578125Hz
*/
DDS_step_size = ((double)priv->xtal * priv->pll_mult ) / 65536;
rig_debug(RIG_DEBUG_VERBOSE, "%s DDS step size %g %g %g\n", __FUNCTION__, DDS_step_size, (double)freq / DDS_step_size,
rint((double)freq / DDS_step_size));
if (spur_red)
frqval = (freq_t) (DDS_step_size * rint((double)freq / DDS_step_size));
else
frqval = freq;
rig_debug(RIG_DEBUG_VERBOSE, "%s curr %lld frqval %lld\n", __FUNCTION__, freq, frqval);
if (priv->dds_freq == frqval) {
return RIG_OK;
}
return RIG_OK;
/*** */
ftw = (double)frqval / priv->xtal ;
for (i = 0; i<6; i++) {
unsigned word;
if (spur_red && i==2)
word = 128;
else if (spur_red && i>2)
word = 0;
else {
word = (unsigned)(ftw * 256);
ftw = ftw*256 - word;
}
rig_debug(RIG_DEBUG_TRACE, "DDS %d [%02x]\n", i, word);
ret = dds_write_reg (rig, 4+i, word);
if (ret != RIG_OK)
return ret;
}
priv->dds_freq = frqval;
return ret;
}
int sdr1k_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
*freq = rig->state.current_freq;
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
*freq = priv->dds_freq;
rig_debug(RIG_DEBUG_TRACE,"%s: %lld\n", __FUNCTION__, priv->dds_freq);
return RIG_OK;
}
/* Set DAC multiplier value */
static int DAC_mult(RIG *rig, unsigned mult)
{
rig_debug(RIG_DEBUG_TRACE, "DAC [%02x,%02x]\n", mult>>8, mult&0xff);
/* Output Shape Key I Mult */
dds_write_reg (rig, 0x21, mult >> 8);
dds_write_reg (rig, 0x22, mult & 0xff);
/* Output Shape Key Q Mult */
dds_write_reg (rig, 0x23, mult >> 8);
dds_write_reg (rig, 0x24, mult & 0xff);
return RIG_OK;
}
int sdr1k_reset (RIG *rig, reset_t reset)
{
port_t *pport = &rig->state.rigport;
par_lock (pport);
par_write_control (pport, 0x0F);
pdelay(rig);
par_unlock (pport);
write_latch (rig, L_EXT, 0x00, 0xff);
/* Reset all Latches (relays off) */
write_latch (rig, L_BAND, 0x00, 0xff);
write_latch (rig, L_DDS0, 0x80, 0xff); /* hold DDS in reset */
write_latch (rig, L_DDS1, 0x00, 0xff);
write_latch (rig, L_DDS0, 0x00, 0xff);
write_latch (rig, L_EXT, 0x00, 0xff);
/* Reset DDS */
write_latch (rig, L_DDS1, RESET|WRB, 0xff); /* reset the DDS chip */
write_latch (rig, L_DDS1, WRB, 0xff); /* leave WRB high */
dds_write_reg (rig, 0x1d, COMP_PD); /* Power down comparator */
/* TODO: add PLL multiplier property and logic */
dds_write_reg (rig, 0x1e, BYPASS_PLL); /* Bypass PLL */
dds_write_reg (rig, 0x20, BYPASS_SINC|OSK_EN);/* Bypass Inverse Sinc and enable DAC */
DAC_mult(rig, DEFAULT_DAC_MULT); /* Set DAC multiplier value */
return RIG_OK;
}
int sdr1k_set_ptt (RIG *rig, vfo_t vfo, ptt_t ptt)
{
set_bit(rig, 1, 6, ptt == RIG_PTT_ON);
return RIG_OK;
return set_bit(rig, L_BAND, 6, ptt == RIG_PTT_ON);
}
void
write_latch (RIG *rig, latch_t which, int value, int mask)
int
write_latch (RIG *rig, latch_t which, unsigned value, unsigned mask)
{
struct sdr1k_priv_data *priv = (struct sdr1k_priv_data *)rig->state.priv;
port_t *pport = &rig->state.rigport;
if (!(0 <= which && which <= 3))
return;
if (!(L_EXT <= which && which <= L_DDS1))
return -RIG_EINVAL;
par_lock (pport);
priv->shadow[which] = (priv->shadow[which] & ~mask) | (value & mask);
@ -325,25 +415,44 @@ write_latch (RIG *rig, latch_t which, int value, int mask)
par_write_control (pport, 0x0F);
pdelay(rig);
par_unlock (pport);
return RIG_OK;
}
void
write_reg (RIG *rig, int addr, int data)
int
dds_write_reg (RIG *rig, unsigned addr, unsigned data)
{
#if 0
write_latch (rig, L_DDS1, addr & 0x3f, 0x3f);
write_latch (rig, L_DDS0, data, 0xff);
write_latch (rig, L_DDS1, 0x40, 0x40);
write_latch (rig, L_DDS1, 0x00, 0x40);
#else
/* set up data bits */
write_latch (rig, L_DDS0, data, 0xff);
/* set up address bits with WRB high */
//write_latch (rig, L_DDS1, addr & 0x3f, 0x3f);
write_latch (rig, L_DDS1, WRB | addr, 0xff);
/* send write command with WRB low */
write_latch (rig, L_DDS1, addr, 0xff);
/* return WRB high */
write_latch (rig, L_DDS1, WRB, 0xff);
#endif
return RIG_OK;
}
void
set_bit (RIG *rig, latch_t reg, int bit, int state)
int
set_bit (RIG *rig, latch_t reg, unsigned bit, unsigned state)
{
int val;
unsigned val;
val = state ? 1<<bit : 0;
write_latch (rig, reg, val, 1<<bit);
return write_latch (rig, reg, val, 1<<bit);
}