#include #include #include #include #include #include "sha256.h" // DBL_INT_ADD treats two unsigned ints a and b as one 64-bit integer and adds c to it #define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - (c)) ++b; a += c; #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b)))) #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b)))) #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22)) #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25)) #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10)) uint32_t k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; void sha256_transform( SHA256_CTX * ctx, uint8_t data[] ) { uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64]; for ( i = 0, j = 0; i < 16; ++i, j += 4 ) m[i] = ( data[j] << 24 ) | ( data[j + 1] << 16 ) | ( data[j + 2] << 8 ) | ( data[j + 3] ); for ( ; i < 64; ++i ) m[i] = SIG1( m[i - 2] ) + m[i - 7] + SIG0( m[i - 15] ) + m[i - 16]; a = ctx->state[0]; b = ctx->state[1]; c = ctx->state[2]; d = ctx->state[3]; e = ctx->state[4]; f = ctx->state[5]; g = ctx->state[6]; h = ctx->state[7]; for ( i = 0; i < 64; ++i ) { t1 = h + EP1( e ) + CH( e, f, g ) + k[i] + m[i]; t2 = EP0( a ) + MAJ( a, b, c ); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; ctx->state[4] += e; ctx->state[5] += f; ctx->state[6] += g; ctx->state[7] += h; } void sha256_init( SHA256_CTX * ctx ) { ctx->datalen = 0; ctx->bitlen[0] = 0; ctx->bitlen[1] = 0; ctx->state[0] = 0x6a09e667; ctx->state[1] = 0xbb67ae85; ctx->state[2] = 0x3c6ef372; ctx->state[3] = 0xa54ff53a; ctx->state[4] = 0x510e527f; ctx->state[5] = 0x9b05688c; ctx->state[6] = 0x1f83d9ab; ctx->state[7] = 0x5be0cd19; } void sha256_update( SHA256_CTX * ctx, char data[], uint32_t len ) { uint32_t i; for ( i = 0; i < len; ++i ) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if ( ctx->datalen == 64 ) { sha256_transform( ctx, ctx->data ); DBL_INT_ADD( ctx->bitlen[0], ctx->bitlen[1], 512 ); ctx->datalen = 0; } } } void sha256_final( SHA256_CTX * ctx, uint8_t hash[] ) { uint32_t i; i = ctx->datalen; // Pad whatever data is left in the buffer. if ( ctx->datalen < 56 ) { ctx->data[i++] = 0x80; while ( i < 56 ) ctx->data[i++] = 0x00; } else { ctx->data[i++] = 0x80; while ( i < 64 ) ctx->data[i++] = 0x00; sha256_transform( ctx, ctx->data ); memset( ctx->data, 0, 56 ); } // Append to the padding the total message's length in bits and transform. DBL_INT_ADD( ctx->bitlen[0], ctx->bitlen[1], ctx->datalen * 8 ); ctx->data[63] = ctx->bitlen[0]; ctx->data[62] = ctx->bitlen[0] >> 8; ctx->data[61] = ctx->bitlen[0] >> 16; ctx->data[60] = ctx->bitlen[0] >> 24; ctx->data[59] = ctx->bitlen[1]; ctx->data[58] = ctx->bitlen[1] >> 8; ctx->data[57] = ctx->bitlen[1] >> 16; ctx->data[56] = ctx->bitlen[1] >> 24; sha256_transform( ctx, ctx->data ); // Since this implementation uses little endian byte ordering and SHA uses big endian, // reverse all the bytes when copying the final state to the output hash. for ( i = 0; i < 4; ++i ) { hash[i] = ( ctx->state[0] >> ( 24 - i * 8 ) ) & 0x000000ff; hash[i + 4] = ( ctx->state[1] >> ( 24 - i * 8 ) ) & 0x000000ff; hash[i + 8] = ( ctx->state[2] >> ( 24 - i * 8 ) ) & 0x000000ff; hash[i + 12] = ( ctx->state[3] >> ( 24 - i * 8 ) ) & 0x000000ff; hash[i + 16] = ( ctx->state[4] >> ( 24 - i * 8 ) ) & 0x000000ff; hash[i + 20] = ( ctx->state[5] >> ( 24 - i * 8 ) ) & 0x000000ff; hash[i + 24] = ( ctx->state[6] >> ( 24 - i * 8 ) ) & 0x000000ff; hash[i + 28] = ( ctx->state[7] >> ( 24 - i * 8 ) ) & 0x000000ff; } }