kopia lustrzana https://github.com/Schildkroet/GRBL-Advanced
1839 wiersze
67 KiB
C
1839 wiersze
67 KiB
C
/*
|
|
GCode.c - rs274/ngc parser.
|
|
Part of Grbl-Advanced
|
|
|
|
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
Copyright (c) 2018-2019 Patrick F.
|
|
|
|
Grbl-Advanced is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl-Advanced is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl-Advanced. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <string.h>
|
|
#include "System.h"
|
|
#include "Settings.h"
|
|
#include "Jog.h"
|
|
#include "Report.h"
|
|
#include "Config.h"
|
|
#include "SpindleControl.h"
|
|
#include "CoolantControl.h"
|
|
#include "MotionControl.h"
|
|
#include "Protocol.h"
|
|
#include "util.h"
|
|
#include "ToolChange.h"
|
|
#include "GCode.h"
|
|
|
|
#include <math.h>
|
|
|
|
|
|
// Modal Group M9: Override control
|
|
#ifdef DEACTIVATE_PARKING_UPON_INIT
|
|
#define OVERRIDE_DISABLED 0 // (Default: Must be zero)
|
|
#define OVERRIDE_PARKING_MOTION 1 // M56
|
|
#else
|
|
#define OVERRIDE_PARKING_MOTION 0 // M56 (Default: Must be zero)
|
|
#define OVERRIDE_DISABLED 1 // Parking disabled.
|
|
#endif
|
|
|
|
|
|
// NOTE: Max line number is defined by the g-code standard to be 99999. It seems to be an
|
|
// arbitrary value, and some GUIs may require more. So we increased it based on a max safe
|
|
// value when converting a float (7.2 digit precision)s to an integer.
|
|
#define MAX_LINE_NUMBER 10000000
|
|
#define MAX_TOOL_NUMBER 255 // Limited by max unsigned 8-bit value
|
|
|
|
#define AXIS_COMMAND_NONE 0
|
|
#define AXIS_COMMAND_NON_MODAL 1
|
|
#define AXIS_COMMAND_MOTION_MODE 2
|
|
#define AXIS_COMMAND_TOOL_LENGTH_OFFSET 3 // *Undefined but required
|
|
|
|
|
|
// Declare gc extern struct
|
|
Parser_State_t gc_state;
|
|
static Parser_Block_t gc_block;
|
|
|
|
|
|
void GC_Init(void)
|
|
{
|
|
memset(&gc_state, 0, sizeof(Parser_State_t));
|
|
|
|
// Load default G54 coordinate system.
|
|
if(!(Settings_ReadCoordData(gc_state.modal.coord_select, gc_state.coord_system)))
|
|
{
|
|
Report_StatusMessage(STATUS_SETTING_READ_FAIL);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets g-code parser position in mm. Input in steps. Called by the system abort and hard
|
|
// limit pull-off routines.
|
|
void GC_SyncPosition(void)
|
|
{
|
|
System_ConvertArraySteps2Mpos(gc_state.position, sys_position);
|
|
}
|
|
|
|
|
|
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
|
|
// characters and signed floating point values (no whitespace). Comments and block delete
|
|
// characters have been removed. In this function, all units and positions are converted and
|
|
// exported to grbl's internal functions in terms of (mm, mm/min) and absolute machine
|
|
// coordinates, respectively.
|
|
uint8_t GC_ExecuteLine(char *line)
|
|
{
|
|
/* -------------------------------------------------------------------------------------
|
|
STEP 1: Initialize parser block struct and copy current g-code state modes. The parser
|
|
updates these modes and commands as the block line is parser and will only be used and
|
|
executed after successful error-checking. The parser block struct also contains a block
|
|
values struct, word tracking variables, and a non-modal commands tracker for the new
|
|
block. This struct contains all of the necessary information to execute the block. */
|
|
|
|
uint8_t axis_command = AXIS_COMMAND_NONE;
|
|
uint8_t axis_0, axis_1, axis_linear;
|
|
uint8_t coord_select = 0; // Tracks G10 P coordinate selection for execution
|
|
|
|
// Initialize bitflag tracking variables for axis indices compatible operations.
|
|
uint8_t axis_words = 0; // XYZ tracking
|
|
uint8_t ijk_words = 0; // IJK tracking
|
|
|
|
// Initialize command and value words and parser flags variables.
|
|
uint16_t command_words = 0; // Tracks G and M command words. Also used for modal group violations.
|
|
uint16_t value_words = 0; // Tracks value words.
|
|
uint8_t gc_parser_flags = GC_PARSER_NONE;
|
|
|
|
|
|
memset(&gc_block, 0, sizeof(Parser_Block_t)); // Initialize the parser block struct.
|
|
memcpy(&gc_block.modal,&gc_state.modal,sizeof(GC_Modal_t)); // Copy current modes
|
|
|
|
// Determine if the line is a jogging motion or a normal g-code block.
|
|
if(line[0] == '$') { // NOTE: `$J=` already parsed when passed to this function.
|
|
// Set G1 and G94 enforced modes to ensure accurate error checks.
|
|
gc_parser_flags |= GC_PARSER_JOG_MOTION;
|
|
gc_block.modal.motion = MOTION_MODE_LINEAR;
|
|
gc_block.modal.feed_rate = FEED_RATE_MODE_UNITS_PER_MIN;
|
|
gc_block.values.n = JOG_LINE_NUMBER; // Initialize default line number reported during jog.
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------------------
|
|
STEP 2: Import all g-code words in the block line. A g-code word is a letter followed by
|
|
a number, which can either be a 'G'/'M' command or sets/assigns a command value. Also,
|
|
perform initial error-checks for command word modal group violations, for any repeated
|
|
words, and for negative values set for the value words F, N, P, T, and S. */
|
|
|
|
uint8_t word_bit = 0; // Bit-value for assigning tracking variables
|
|
uint8_t char_counter = 0;
|
|
char letter = 0;
|
|
float value = 0.0;
|
|
uint8_t int_value = 0;
|
|
uint16_t mantissa = 0;
|
|
float old_xyz[N_AXIS] = {0.0};
|
|
uint8_t change_tool = 0;
|
|
|
|
memcpy(old_xyz, gc_state.position, N_AXIS*sizeof(float));
|
|
|
|
if(gc_parser_flags & GC_PARSER_JOG_MOTION)
|
|
{
|
|
// Start parsing after `$J=`
|
|
char_counter = 3;
|
|
}
|
|
else
|
|
{
|
|
char_counter = 0;
|
|
}
|
|
|
|
while(line[char_counter] != 0) // Loop until no more g-code words in line.
|
|
{
|
|
// Import the next g-code word, expecting a letter followed by a value. Otherwise, error out.
|
|
letter = line[char_counter];
|
|
if((letter < 'A') || (letter > 'Z'))
|
|
{
|
|
return STATUS_EXPECTED_COMMAND_LETTER;
|
|
} // [Expected word letter]
|
|
|
|
char_counter++;
|
|
if(!Read_Float(line, &char_counter, &value))
|
|
{
|
|
return STATUS_BAD_NUMBER_FORMAT;
|
|
} // [Expected word value]
|
|
|
|
// Convert values to smaller uint8 significand and mantissa values for parsing this word.
|
|
// NOTE: Mantissa is multiplied by 100 to catch non-integer command values. This is more
|
|
// accurate than the NIST gcode requirement of x10 when used for commands, but not quite
|
|
// accurate enough for value words that require integers to within 0.0001. This should be
|
|
// a good enough comprimise and catch most all non-integer errors. To make it compliant,
|
|
// we would simply need to change the mantissa to int16, but this add compiled flash space.
|
|
// Maybe update this later.
|
|
int_value = trunc(value);
|
|
mantissa = round(100*(value - int_value)); // Compute mantissa for Gxx.x commands.
|
|
// NOTE: Rounding must be used to catch small floating point errors.
|
|
|
|
// Check if the g-code word is supported or errors due to modal group violations or has
|
|
// been repeated in the g-code block. If ok, update the command or record its value.
|
|
switch(letter)
|
|
{
|
|
/* 'G' and 'M' Command Words: Parse commands and check for modal group violations.
|
|
NOTE: Modal group numbers are defined in Table 4 of NIST RS274-NGC v3, pg.20 */
|
|
|
|
case 'G':
|
|
// Determine 'G' command and its modal group
|
|
switch(int_value)
|
|
{
|
|
case 10: case 28: case 30: case 92:
|
|
// Check for G10/28/30/92 being called with G0/1/2/3/38 on same block.
|
|
// * G43.1 is also an axis command but is not explicitly defined this way.
|
|
if(mantissa == 0) // Ignore G28.1, G30.1, and G92.1
|
|
{
|
|
if (axis_command)
|
|
{
|
|
// [Axis word/command conflict]
|
|
return STATUS_GCODE_AXIS_COMMAND_CONFLICT;
|
|
}
|
|
axis_command = AXIS_COMMAND_NON_MODAL;
|
|
}
|
|
// No break. Continues to next line.
|
|
|
|
case 4: case 53:
|
|
word_bit = MODAL_GROUP_G0;
|
|
gc_block.non_modal_command = int_value;
|
|
|
|
if((int_value == 28) || (int_value == 30) || (int_value == 92))
|
|
{
|
|
if(!((mantissa == 0) || (mantissa == 10)))
|
|
{
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND;
|
|
}
|
|
gc_block.non_modal_command += mantissa;
|
|
mantissa = 0; // Set to zero to indicate valid non-integer G command.
|
|
}
|
|
break;
|
|
|
|
case 0: case 1: case 2: case 3: case 38:
|
|
// Check for G0/1/2/3/38 being called with G10/28/30/92 on same block.
|
|
// * G43.1 is also an axis command but is not explicitly defined this way.
|
|
if(axis_command)
|
|
{
|
|
// [Axis word/command conflict]
|
|
return STATUS_GCODE_AXIS_COMMAND_CONFLICT;
|
|
}
|
|
axis_command = AXIS_COMMAND_MOTION_MODE;
|
|
// No break. Continues to next line.
|
|
|
|
case 80:
|
|
word_bit = MODAL_GROUP_G1;
|
|
gc_block.modal.motion = int_value;
|
|
|
|
if(int_value == 38)
|
|
{
|
|
if(!((mantissa == 20) || (mantissa == 30) || (mantissa == 40) || (mantissa == 50)))
|
|
{
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND; // [Unsupported G38.x command]
|
|
}
|
|
gc_block.modal.motion += (mantissa/10)+100;
|
|
mantissa = 0; // Set to zero to indicate valid non-integer G command.
|
|
}
|
|
break;
|
|
|
|
case 81: case 82: case 83: // Canned drilling cycles
|
|
word_bit = MODAL_GROUP_G1;
|
|
//gc_block.modal.motion = MOTION_MODE_DRILL;
|
|
gc_block.modal.motion = int_value;
|
|
|
|
break;
|
|
|
|
// Set retract mode
|
|
case 98: case 99:
|
|
word_bit = MODAL_GROUP_G10;
|
|
gc_block.modal.retract = int_value - 98;
|
|
break;
|
|
|
|
case 17: case 18: case 19:
|
|
word_bit = MODAL_GROUP_G2;
|
|
gc_block.modal.plane_select = int_value - 17;
|
|
break;
|
|
|
|
case 90: case 91:
|
|
if(mantissa == 0)
|
|
{
|
|
word_bit = MODAL_GROUP_G3;
|
|
gc_block.modal.distance = int_value - 90;
|
|
}
|
|
else
|
|
{
|
|
word_bit = MODAL_GROUP_G4;
|
|
if ((mantissa != 10) || (int_value == 90))
|
|
{
|
|
// [G90.1 not supported]
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND;
|
|
}
|
|
mantissa = 0; // Set to zero to indicate valid non-integer G command.
|
|
// Otherwise, arc IJK incremental mode is default. G91.1 does nothing.
|
|
}
|
|
break;
|
|
|
|
case 93: case 94:
|
|
word_bit = MODAL_GROUP_G5;
|
|
gc_block.modal.feed_rate = 94 - int_value;
|
|
break;
|
|
|
|
case 20: case 21:
|
|
word_bit = MODAL_GROUP_G6;
|
|
gc_block.modal.units = 21 - int_value;
|
|
break;
|
|
|
|
case 40:
|
|
word_bit = MODAL_GROUP_G7;
|
|
// NOTE: Not required since cutter radius compensation is always disabled. Only here
|
|
// to support G40 commands that often appear in g-code program headers to setup defaults.
|
|
// gc_block.modal.cutter_comp = CUTTER_COMP_DISABLE; // G40
|
|
break;
|
|
|
|
case 43: case 49:
|
|
word_bit = MODAL_GROUP_G8;
|
|
// NOTE: The NIST g-code standard vaguely states that when a tool length offset is changed,
|
|
// there cannot be any axis motion or coordinate offsets updated. Meaning G43, G43.1, and G49
|
|
// all are explicit axis commands, regardless if they require axis words or not.
|
|
if(axis_command)
|
|
{
|
|
// [Axis word/command conflict]
|
|
return STATUS_GCODE_AXIS_COMMAND_CONFLICT;
|
|
}
|
|
|
|
axis_command = AXIS_COMMAND_TOOL_LENGTH_OFFSET;
|
|
|
|
if(int_value == 49) // G49
|
|
{
|
|
gc_block.modal.tool_length = TOOL_LENGTH_OFFSET_CANCEL;
|
|
}
|
|
else if(mantissa == 10) // G43.1
|
|
{
|
|
gc_block.modal.tool_length = TOOL_LENGTH_OFFSET_ENABLE_DYNAMIC;
|
|
}
|
|
else
|
|
{
|
|
// [Unsupported G43.x command]
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND;
|
|
}
|
|
|
|
mantissa = 0; // Set to zero to indicate valid non-integer G command.
|
|
break;
|
|
|
|
case 54: case 55: case 56: case 57: case 58: case 59:
|
|
// NOTE: G59.x are not supported. (But their int_values would be 60, 61, and 62.)
|
|
word_bit = MODAL_GROUP_G12;
|
|
gc_block.modal.coord_select = int_value - 54; // Shift to array indexing.
|
|
break;
|
|
|
|
case 61:
|
|
word_bit = MODAL_GROUP_G13;
|
|
if(mantissa != 0)
|
|
{
|
|
// [G61.1 not supported]
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND;
|
|
}
|
|
// gc_block.modal.control = CONTROL_MODE_EXACT_PATH; // G61
|
|
break;
|
|
|
|
default:
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND; // [Unsupported G command]
|
|
}
|
|
|
|
if(mantissa > 0)
|
|
{
|
|
// [Unsupported or invalid Gxx.x command]
|
|
return STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER;
|
|
}
|
|
|
|
// Check for more than one command per modal group violations in the current block
|
|
// NOTE: Variable 'word_bit' is always assigned, if the command is valid.
|
|
if(BIT_IS_TRUE(command_words,BIT(word_bit)))
|
|
{
|
|
return STATUS_GCODE_MODAL_GROUP_VIOLATION;
|
|
}
|
|
command_words |= BIT(word_bit);
|
|
break;
|
|
|
|
case 'M':
|
|
// Determine 'M' command and its modal group
|
|
if(mantissa > 0)
|
|
{
|
|
// [No Mxx.x commands]
|
|
return STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER;
|
|
}
|
|
|
|
switch(int_value)
|
|
{
|
|
case 0: case 1: case 2: case 30:
|
|
word_bit = MODAL_GROUP_M4;
|
|
|
|
switch(int_value)
|
|
{
|
|
case 0:
|
|
gc_block.modal.program_flow = PROGRAM_FLOW_PAUSED;
|
|
break; // Program pause
|
|
|
|
case 1:
|
|
break; // Optional stop not supported. Ignore.
|
|
|
|
default:
|
|
gc_block.modal.program_flow = int_value; // Program end and reset
|
|
}
|
|
break;
|
|
|
|
case 3: case 4: case 5:
|
|
word_bit = MODAL_GROUP_M7;
|
|
switch(int_value)
|
|
{
|
|
case 3:
|
|
gc_block.modal.spindle = SPINDLE_ENABLE_CW;
|
|
break;
|
|
|
|
case 4:
|
|
gc_block.modal.spindle = SPINDLE_ENABLE_CCW;
|
|
break;
|
|
|
|
case 5:
|
|
gc_block.modal.spindle = SPINDLE_DISABLE;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 6: // Tool change
|
|
change_tool = 1;
|
|
break;
|
|
|
|
#ifdef ENABLE_M7
|
|
case 7: case 8: case 9:
|
|
#else
|
|
case 8: case 9:
|
|
#endif
|
|
word_bit = MODAL_GROUP_M8;
|
|
|
|
switch(int_value)
|
|
{
|
|
#ifdef ENABLE_M7
|
|
case 7:
|
|
gc_block.modal.coolant |= COOLANT_MIST_ENABLE;
|
|
break;
|
|
#endif
|
|
case 8:
|
|
gc_block.modal.coolant |= COOLANT_FLOOD_ENABLE;
|
|
break;
|
|
|
|
case 9:
|
|
// M9: Disable both
|
|
gc_block.modal.coolant = COOLANT_DISABLE;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
|
|
case 56:
|
|
word_bit = MODAL_GROUP_M9;
|
|
gc_block.modal.override = OVERRIDE_PARKING_MOTION;
|
|
break;
|
|
#endif
|
|
default:
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND; // [Unsupported M command]
|
|
}
|
|
|
|
// Check for more than one command per modal group violations in the current block
|
|
// NOTE: Variable 'word_bit' is always assigned, if the command is valid.
|
|
if(BIT_IS_TRUE(command_words, BIT(word_bit)))
|
|
{
|
|
return STATUS_GCODE_MODAL_GROUP_VIOLATION;
|
|
}
|
|
command_words |= BIT(word_bit);
|
|
break;
|
|
|
|
// NOTE: All remaining letters assign values.
|
|
default:
|
|
/* Non-Command Words: This initial parsing phase only checks for repeats of the remaining
|
|
legal g-code words and stores their value. Error-checking is performed later since some
|
|
words (I,J,K,L,P,R) have multiple connotations and/or depend on the issued commands. */
|
|
switch(letter)
|
|
{
|
|
#ifdef USE_MULTI_AXIS
|
|
case 'A': word_bit = WORD_A; gc_block.values.xyz[A_AXIS] = value; axis_words |= (1<<A_AXIS); break;
|
|
case 'B': word_bit = WORD_B; gc_block.values.xyz[B_AXIS] = value; axis_words |= (1<<B_AXIS); break;
|
|
#endif
|
|
// case 'C': // Not supported
|
|
// case 'D': // Not supported
|
|
case 'F': word_bit = WORD_F; gc_block.values.f = value; break;
|
|
// case 'H': // Not supported
|
|
case 'I': word_bit = WORD_I; gc_block.values.ijk[X_AXIS] = value; ijk_words |= (1<<X_AXIS); break;
|
|
case 'J': word_bit = WORD_J; gc_block.values.ijk[Y_AXIS] = value; ijk_words |= (1<<Y_AXIS); break;
|
|
case 'K': word_bit = WORD_K; gc_block.values.ijk[Z_AXIS] = value; ijk_words |= (1<<Z_AXIS); break;
|
|
case 'L': word_bit = WORD_L; gc_block.values.l = int_value; break;
|
|
case 'N': word_bit = WORD_N; gc_block.values.n = trunc(value); break;
|
|
case 'P': word_bit = WORD_P; gc_block.values.p = value; break;
|
|
// NOTE: For certain commands, P value must be an integer, but none of these commands are supported.
|
|
case 'Q': word_bit = WORD_Q; gc_block.values.q = value; break;
|
|
case 'R': word_bit = WORD_R; gc_block.values.r = value; break;
|
|
case 'S': word_bit = WORD_S; gc_block.values.s = value; break;
|
|
case 'T': word_bit = WORD_T;
|
|
if(value > MAX_TOOL_NUMBER)
|
|
{
|
|
return STATUS_GCODE_MAX_VALUE_EXCEEDED;
|
|
}
|
|
gc_block.values.t = int_value;
|
|
break;
|
|
|
|
case 'X': word_bit = WORD_X; gc_block.values.xyz[X_AXIS] = value; axis_words |= (1<<X_AXIS); break;
|
|
case 'Y': word_bit = WORD_Y; gc_block.values.xyz[Y_AXIS] = value; axis_words |= (1<<Y_AXIS); break;
|
|
case 'Z': word_bit = WORD_Z; gc_block.values.xyz[Z_AXIS] = value; axis_words |= (1<<Z_AXIS); break;
|
|
default:
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND;
|
|
}
|
|
|
|
// NOTE: Variable 'word_bit' is always assigned, if the non-command letter is valid.
|
|
if (BIT_IS_TRUE(value_words, BIT(word_bit)))
|
|
{
|
|
return STATUS_GCODE_WORD_REPEATED;
|
|
} // [Word repeated]
|
|
|
|
// Check for invalid negative values for words F, N, P, T, and S.
|
|
// NOTE: Negative value check is done here simply for code-efficiency.
|
|
if(BIT(word_bit) & (BIT(WORD_F)|BIT(WORD_N)|BIT(WORD_P)|BIT(WORD_T)|BIT(WORD_S)))
|
|
{
|
|
if(value < 0.0)
|
|
{
|
|
// [Word value cannot be negative]
|
|
return STATUS_NEGATIVE_VALUE;
|
|
}
|
|
}
|
|
value_words |= BIT(word_bit); // Flag to indicate parameter assigned.
|
|
|
|
}
|
|
}
|
|
// Parsing complete!
|
|
|
|
|
|
/* -------------------------------------------------------------------------------------
|
|
STEP 3: Error-check all commands and values passed in this block. This step ensures all of
|
|
the commands are valid for execution and follows the NIST standard as closely as possible.
|
|
If an error is found, all commands and values in this block are dumped and will not update
|
|
the active system g-code modes. If the block is ok, the active system g-code modes will be
|
|
updated based on the commands of this block, and signal for it to be executed.
|
|
|
|
Also, we have to pre-convert all of the values passed based on the modes set by the parsed
|
|
block. There are a number of error-checks that require target information that can only be
|
|
accurately calculated if we convert these values in conjunction with the error-checking.
|
|
This relegates the next execution step as only updating the system g-code modes and
|
|
performing the programmed actions in order. The execution step should not require any
|
|
conversion calculations and would only require minimal checks necessary to execute.
|
|
*/
|
|
|
|
/* NOTE: At this point, the g-code block has been parsed and the block line can be freed.
|
|
NOTE: It's also possible, at some future point, to break up STEP 2, to allow piece-wise
|
|
parsing of the block on a per-word basis, rather than the entire block. This could remove
|
|
the need for maintaining a large string variable for the entire block and free up some memory.
|
|
To do this, this would simply need to retain all of the data in STEP 1, such as the new block
|
|
data struct, the modal group and value bitflag tracking variables, and axis array indices
|
|
compatible variables. This data contains all of the information necessary to error-check the
|
|
new g-code block when the EOL character is received. However, this would break Grbl's startup
|
|
lines in how it currently works and would require some refactoring to make it compatible.
|
|
*/
|
|
|
|
// [0. Non-specific/common error-checks and miscellaneous setup]:
|
|
|
|
// Determine implicit axis command conditions. Axis words have been passed, but no explicit axis
|
|
// command has been sent. If so, set axis command to current motion mode.
|
|
if(axis_words)
|
|
{
|
|
if(!axis_command)
|
|
{
|
|
// Assign implicit motion-mode
|
|
axis_command = AXIS_COMMAND_MOTION_MODE;
|
|
}
|
|
}
|
|
|
|
// Check for valid line number N value.
|
|
if(BIT_IS_TRUE(value_words,BIT(WORD_N)))
|
|
{
|
|
// Line number value cannot be less than zero (done) or greater than max line number.
|
|
if(gc_block.values.n > MAX_LINE_NUMBER)
|
|
{
|
|
// [Exceeds max line number]
|
|
return STATUS_GCODE_INVALID_LINE_NUMBER;
|
|
}
|
|
}
|
|
|
|
// bit_false(value_words,bit(WORD_N)); // NOTE: Single-meaning value word. Set at end of error-checking.
|
|
|
|
// Track for unused words at the end of error-checking.
|
|
// NOTE: Single-meaning value words are removed all at once at the end of error-checking, because
|
|
// they are always used when present. This was done to save a few bytes of flash. For clarity, the
|
|
// single-meaning value words may be removed as they are used. Also, axis words are treated in the
|
|
// same way. If there is an explicit/implicit axis command, XYZ words are always used and are
|
|
// are removed at the end of error-checking.
|
|
|
|
// [1. Comments ]: MSG's NOT SUPPORTED. Comment handling performed by protocol.
|
|
|
|
// [2. Set feed rate mode ]: G93 F word missing with G1,G2/3 active, implicitly or explicitly. Feed rate
|
|
// is not defined after switching to G94 from G93.
|
|
// NOTE: For jogging, ignore prior feed rate mode. Enforce G94 and check for required F word.
|
|
if(gc_parser_flags & GC_PARSER_JOG_MOTION)
|
|
{
|
|
if(BIT_IS_FALSE(value_words, BIT(WORD_F)))
|
|
{
|
|
return STATUS_GCODE_UNDEFINED_FEED_RATE;
|
|
}
|
|
|
|
if(gc_block.modal.units == UNITS_MODE_INCHES)
|
|
{
|
|
gc_block.values.f *= MM_PER_INCH;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(gc_block.modal.feed_rate == FEED_RATE_MODE_INVERSE_TIME) { // = G93
|
|
// NOTE: G38 can also operate in inverse time, but is undefined as an error. Missing F word check added here.
|
|
if(axis_command == AXIS_COMMAND_MOTION_MODE) {
|
|
if((gc_block.modal.motion != MOTION_MODE_NONE) && (gc_block.modal.motion != MOTION_MODE_SEEK))
|
|
{
|
|
if(BIT_IS_FALSE(value_words, BIT(WORD_F)))
|
|
{
|
|
// [F word missing]
|
|
return STATUS_GCODE_UNDEFINED_FEED_RATE;
|
|
}
|
|
}
|
|
}
|
|
// NOTE: It seems redundant to check for an F word to be passed after switching from G94 to G93. We would
|
|
// accomplish the exact same thing if the feed rate value is always reset to zero and undefined after each
|
|
// inverse time block, since the commands that use this value already perform undefined checks. This would
|
|
// also allow other commands, following this switch, to execute and not error out needlessly. This code is
|
|
// combined with the above feed rate mode and the below set feed rate error-checking.
|
|
|
|
// [3. Set feed rate ]: F is negative (done.)
|
|
// - In inverse time mode: Always implicitly zero the feed rate value before and after block completion.
|
|
// NOTE: If in G93 mode or switched into it from G94, just keep F value as initialized zero or passed F word
|
|
// value in the block. If no F word is passed with a motion command that requires a feed rate, this will error
|
|
// out in the motion modes error-checking. However, if no F word is passed with NO motion command that requires
|
|
// a feed rate, we simply move on and the state feed rate value gets updated to zero and remains undefined.
|
|
}
|
|
else { // = G94
|
|
// - In units per mm mode: If F word passed, ensure value is in mm/min, otherwise push last state value.
|
|
if(gc_state.modal.feed_rate == FEED_RATE_MODE_UNITS_PER_MIN) { // Last state is also G94
|
|
if(BIT_IS_TRUE(value_words, BIT(WORD_F)))
|
|
{
|
|
if(gc_block.modal.units == UNITS_MODE_INCHES)
|
|
{
|
|
gc_block.values.f *= MM_PER_INCH;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gc_block.values.f = gc_state.feed_rate; // Push last state feed rate
|
|
}
|
|
} // Else, switching to G94 from G93, so don't push last state feed rate. Its undefined or the passed F word value.
|
|
}
|
|
}
|
|
// bit_false(value_words,bit(WORD_F)); // NOTE: Single-meaning value word. Set at end of error-checking.
|
|
|
|
// [4. Set spindle speed ]: S is negative (done.)
|
|
if(BIT_IS_FALSE(value_words, BIT(WORD_S)))
|
|
{
|
|
gc_block.values.s = gc_state.spindle_speed;
|
|
}
|
|
// bit_false(value_words,bit(WORD_S)); // NOTE: Single-meaning value word. Set at end of error-checking.
|
|
|
|
// [5. Select tool ]: NOT SUPPORTED. Only tracks value. T is negative (done.) Not an integer. Greater than max tool value.
|
|
// bit_false(value_words,bit(WORD_T)); // NOTE: Single-meaning value word. Set at end of error-checking.
|
|
|
|
// [6. Change tool ]: N/A
|
|
// [7. Spindle control ]: N/A
|
|
// [8. Coolant control ]: N/A
|
|
// [9. Override control ]: Not supported except for a Grbl-only parking motion override control.
|
|
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
|
|
if(BIT_IS_TRUE(command_words, BIT(MODAL_GROUP_M9))) { // Already set as enabled in parser.
|
|
if(BIT_IS_TRUE(value_words, BIT(WORD_P)))
|
|
{
|
|
if(gc_block.values.p == 0.0)
|
|
{
|
|
gc_block.modal.override = OVERRIDE_DISABLED;
|
|
}
|
|
BIT_FALSE(value_words, BIT(WORD_P));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// [10. Dwell ]: P value missing. P is negative (done.) NOTE: See below.
|
|
if(gc_block.non_modal_command == NON_MODAL_DWELL)
|
|
{
|
|
if(BIT_IS_FALSE(value_words, BIT(WORD_P)))
|
|
{
|
|
// [P word missing]
|
|
return STATUS_GCODE_VALUE_WORD_MISSING;
|
|
}
|
|
BIT_FALSE(value_words, BIT(WORD_P));
|
|
}
|
|
|
|
// [10.1 Canned drilling cycle]: R/P/Q value missing.
|
|
if(gc_block.modal.motion == MOTION_MODE_DRILL || gc_block.modal.motion == MOTION_MODE_DRILL_DWELL || gc_block.modal.motion == MOTION_MODE_DRILL_PECK)
|
|
{
|
|
if(BIT_IS_FALSE(value_words, BIT(WORD_R)))
|
|
{
|
|
// [R word missing]
|
|
return STATUS_GCODE_VALUE_WORD_MISSING;
|
|
}
|
|
BIT_FALSE(value_words, BIT(WORD_R));
|
|
|
|
if(gc_block.modal.motion == MOTION_MODE_DRILL_DWELL)
|
|
{
|
|
if(BIT_IS_FALSE(value_words, BIT(WORD_P)))
|
|
{
|
|
// [P word missing]
|
|
return STATUS_GCODE_VALUE_WORD_MISSING;
|
|
}
|
|
// TODO: Check validity of P
|
|
BIT_FALSE(value_words, BIT(WORD_P));
|
|
}
|
|
if(gc_block.modal.motion == MOTION_MODE_DRILL_PECK)
|
|
{
|
|
if(BIT_IS_FALSE(value_words, BIT(WORD_Q)))
|
|
{
|
|
// [Q word missing]
|
|
return STATUS_GCODE_VALUE_WORD_MISSING;
|
|
}
|
|
// TODO: Check validity of Q
|
|
BIT_FALSE(value_words, BIT(WORD_Q));
|
|
}
|
|
}
|
|
|
|
// [11. Set active plane ]: N/A
|
|
switch(gc_block.modal.plane_select)
|
|
{
|
|
case PLANE_SELECT_XY:
|
|
axis_0 = X_AXIS;
|
|
axis_1 = Y_AXIS;
|
|
axis_linear = Z_AXIS;
|
|
break;
|
|
|
|
case PLANE_SELECT_ZX:
|
|
axis_0 = Z_AXIS;
|
|
axis_1 = X_AXIS;
|
|
axis_linear = Y_AXIS;
|
|
break;
|
|
|
|
default: // case PLANE_SELECT_YZ:
|
|
axis_0 = Y_AXIS;
|
|
axis_1 = Z_AXIS;
|
|
axis_linear = X_AXIS;
|
|
}
|
|
|
|
// [12. Set length units ]: N/A
|
|
// Pre-convert XYZ coordinate values to millimeters, if applicable.
|
|
uint8_t idx;
|
|
if(gc_block.modal.units == UNITS_MODE_INCHES)
|
|
{
|
|
for(idx = 0; idx < N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
|
|
if(BIT_IS_TRUE(axis_words, BIT(idx)))
|
|
{
|
|
gc_block.values.xyz[idx] *= MM_PER_INCH;
|
|
}
|
|
}
|
|
}
|
|
|
|
// [13. Cutter radius compensation ]: G41/42 NOT SUPPORTED. Error, if enabled while G53 is active.
|
|
// [G40 Errors]: G2/3 arc is programmed after a G40. The linear move after disabling is less than tool diameter.
|
|
// NOTE: Since cutter radius compensation is never enabled, these G40 errors don't apply. Grbl supports G40
|
|
// only for the purpose to not error when G40 is sent with a g-code program header to setup the default modes.
|
|
|
|
// [14. Cutter length compensation ]: G43 NOT SUPPORTED, but G43.1 and G49 are.
|
|
// [G43.1 Errors]: Motion command in same line.
|
|
// NOTE: Although not explicitly stated so, G43.1 should be applied to only one valid
|
|
// axis that is configured (in config.h). There should be an error if the configured axis
|
|
// is absent or if any of the other axis words are present.
|
|
if(axis_command == AXIS_COMMAND_TOOL_LENGTH_OFFSET ) { // Indicates called in block.
|
|
if(gc_block.modal.tool_length == TOOL_LENGTH_OFFSET_ENABLE_DYNAMIC)
|
|
{
|
|
if(axis_words ^ (1<<TOOL_LENGTH_OFFSET_AXIS))
|
|
{
|
|
return STATUS_GCODE_G43_DYNAMIC_AXIS_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
// [15. Coordinate system selection ]: *N/A. Error, if cutter radius comp is active.
|
|
// TODO: An EEPROM read of the coordinate data may require a buffer sync when the cycle
|
|
// is active. The read pauses the processor temporarily and may cause a rare crash. For
|
|
// future versions on processors with enough memory, all coordinate data should be stored
|
|
// in memory and written to EEPROM only when there is not a cycle active.
|
|
float block_coord_system[N_AXIS];
|
|
memcpy(block_coord_system, gc_state.coord_system, sizeof(gc_state.coord_system));
|
|
|
|
if(BIT_IS_TRUE(command_words,BIT(MODAL_GROUP_G12))) { // Check if called in block
|
|
if(gc_block.modal.coord_select > N_COORDINATE_SYSTEM)
|
|
{
|
|
// [Greater than N sys]
|
|
return STATUS_GCODE_UNSUPPORTED_COORD_SYS;
|
|
}
|
|
|
|
if(gc_state.modal.coord_select != gc_block.modal.coord_select)
|
|
{
|
|
if(!(Settings_ReadCoordData(gc_block.modal.coord_select, block_coord_system)))
|
|
{
|
|
return STATUS_SETTING_READ_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
// [16. Set path control mode ]: N/A. Only G61. G61.1 and G64 NOT SUPPORTED.
|
|
// [17. Set distance mode ]: N/A. Only G91.1. G90.1 NOT SUPPORTED.
|
|
// [18. Set retract mode ]: NOT SUPPORTED.
|
|
|
|
// [19. Remaining non-modal actions ]: Check go to predefined position, set G10, or set axis offsets.
|
|
// NOTE: We need to separate the non-modal commands that are axis word-using (G10/G28/G30/G92), as these
|
|
// commands all treat axis words differently. G10 as absolute offsets or computes current position as
|
|
// the axis value, G92 similarly to G10 L20, and G28/30 as an intermediate target position that observes
|
|
// all the current coordinate system and G92 offsets.
|
|
switch (gc_block.non_modal_command)
|
|
{
|
|
case NON_MODAL_SET_COORDINATE_DATA:
|
|
// [G10 Errors]: L missing and is not 2 or 20. P word missing. (Negative P value done.)
|
|
// [G10 L2 Errors]: R word NOT SUPPORTED. P value not 0 to nCoordSys(max 9). Axis words missing.
|
|
// [G10 L20 Errors]: P must be 0 to nCoordSys(max 9). Axis words missing.
|
|
if(!axis_words)
|
|
{
|
|
// [No axis words]
|
|
return STATUS_GCODE_NO_AXIS_WORDS;
|
|
}
|
|
if(BIT_IS_FALSE(value_words, ((1<<WORD_P)|(1<<WORD_L))))
|
|
{
|
|
// [P/L word missing]
|
|
return STATUS_GCODE_VALUE_WORD_MISSING;
|
|
}
|
|
|
|
coord_select = trunc(gc_block.values.p); // Convert p value to int.
|
|
if(coord_select > N_COORDINATE_SYSTEM)
|
|
{
|
|
// [Greater than N sys]
|
|
return STATUS_GCODE_UNSUPPORTED_COORD_SYS;
|
|
}
|
|
|
|
if(gc_block.values.l != 20)
|
|
{
|
|
if(gc_block.values.l == 2)
|
|
{
|
|
if(BIT_IS_TRUE(value_words, BIT(WORD_R)))
|
|
{
|
|
// [G10 L2 R not supported]
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// [Unsupported L]
|
|
return STATUS_GCODE_UNSUPPORTED_COMMAND;
|
|
}
|
|
}
|
|
BIT_FALSE(value_words, (BIT(WORD_L) | BIT(WORD_P)));
|
|
|
|
// Determine coordinate system to change and try to load from EEPROM.
|
|
if(coord_select > 0)
|
|
{
|
|
// Adjust P1-P6 index to EEPROM coordinate data indexing.
|
|
coord_select--;
|
|
}
|
|
else
|
|
{
|
|
// Index P0 as the active coordinate system
|
|
coord_select = gc_block.modal.coord_select;
|
|
}
|
|
|
|
// NOTE: Store parameter data in IJK values. By rule, they are not in use with this command.
|
|
if(!Settings_ReadCoordData(coord_select, gc_block.values.ijk))
|
|
{
|
|
// [EEPROM read fail]
|
|
return STATUS_SETTING_READ_FAIL;
|
|
}
|
|
|
|
// Pre-calculate the coordinate data changes.
|
|
for(idx = 0; idx < N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
|
|
// Update axes defined only in block. Always in machine coordinates. Can change non-active system.
|
|
if(BIT_IS_TRUE(axis_words, BIT(idx)))
|
|
{
|
|
if(gc_block.values.l == 20)
|
|
{
|
|
// L20: Update coordinate system axis at current position (with modifiers) with programmed value
|
|
// WPos = MPos - WCS - G92 - TLO -> WCS = MPos - G92 - TLO - WPos
|
|
gc_block.values.ijk[idx] = gc_state.position[idx] - gc_state.coord_offset[idx] - gc_block.values.xyz[idx];
|
|
if(idx == TOOL_LENGTH_OFFSET_AXIS)
|
|
{
|
|
gc_block.values.ijk[idx] -= gc_state.tool_length_offset;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// L2: Update coordinate system axis to programmed value.
|
|
gc_block.values.ijk[idx] = gc_block.values.xyz[idx];
|
|
}
|
|
} // Else, keep current stored value.
|
|
}
|
|
break;
|
|
|
|
case NON_MODAL_SET_COORDINATE_OFFSET:
|
|
// [G92 Errors]: No axis words.
|
|
if(!axis_words)
|
|
{
|
|
// [No axis words]
|
|
return STATUS_GCODE_NO_AXIS_WORDS;
|
|
}
|
|
|
|
// Update axes defined only in block. Offsets current system to defined value. Does not update when
|
|
// active coordinate system is selected, but is still active unless G92.1 disables it.
|
|
for(idx = 0; idx < N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
|
|
if(BIT_IS_TRUE(axis_words, BIT(idx)))
|
|
{
|
|
// WPos = MPos - WCS - G92 - TLO -> G92 = MPos - WCS - TLO - WPos
|
|
gc_block.values.xyz[idx] = gc_state.position[idx] - block_coord_system[idx] - gc_block.values.xyz[idx];
|
|
if(idx == TOOL_LENGTH_OFFSET_AXIS)
|
|
{
|
|
gc_block.values.xyz[idx] -= gc_state.tool_length_offset;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gc_block.values.xyz[idx] = gc_state.coord_offset[idx];
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// At this point, the rest of the explicit axis commands treat the axis values as the traditional
|
|
// target position with the coordinate system offsets, G92 offsets, absolute override, and distance
|
|
// modes applied. This includes the motion mode commands. We can now pre-compute the target position.
|
|
// NOTE: Tool offsets may be appended to these conversions when/if this feature is added.
|
|
if(axis_command != AXIS_COMMAND_TOOL_LENGTH_OFFSET) { // TLO block any axis command.
|
|
if(axis_words)
|
|
{
|
|
for(idx = 0; idx < N_AXIS; idx++) { // Axes indices are consistent, so loop may be used to save flash space.
|
|
if(BIT_IS_FALSE(axis_words, BIT(idx)))
|
|
{
|
|
gc_block.values.xyz[idx] = gc_state.position[idx]; // No axis word in block. Keep same axis position.
|
|
}
|
|
else
|
|
{
|
|
// Update specified value according to distance mode or ignore if absolute override is active.
|
|
// NOTE: G53 is never active with G28/30 since they are in the same modal group.
|
|
if(gc_block.non_modal_command != NON_MODAL_ABSOLUTE_OVERRIDE)
|
|
{
|
|
// Apply coordinate offsets based on distance mode.
|
|
if(gc_block.modal.distance == DISTANCE_MODE_ABSOLUTE)
|
|
{
|
|
gc_block.values.xyz[idx] += block_coord_system[idx] + gc_state.coord_offset[idx];
|
|
if(idx == TOOL_LENGTH_OFFSET_AXIS)
|
|
{
|
|
gc_block.values.xyz[idx] += gc_state.tool_length_offset;
|
|
}
|
|
}
|
|
else
|
|
{ // Incremental mode
|
|
gc_block.values.xyz[idx] += gc_state.position[idx];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check remaining non-modal commands for errors.
|
|
switch(gc_block.non_modal_command)
|
|
{
|
|
case NON_MODAL_GO_HOME_0: // G28
|
|
case NON_MODAL_GO_HOME_1: // G30
|
|
// [G28/30 Errors]: Cutter compensation is enabled.
|
|
// Retreive G28/30 go-home position data (in machine coordinates) from EEPROM
|
|
// NOTE: Store parameter data in IJK values. By rule, they are not in use with this command.
|
|
if(gc_block.non_modal_command == NON_MODAL_GO_HOME_0)
|
|
{
|
|
if(!Settings_ReadCoordData(SETTING_INDEX_G28, gc_block.values.ijk))
|
|
{
|
|
return STATUS_SETTING_READ_FAIL;
|
|
}
|
|
}
|
|
else // == NON_MODAL_GO_HOME_1
|
|
{
|
|
if (!Settings_ReadCoordData(SETTING_INDEX_G30, gc_block.values.ijk))
|
|
{
|
|
return STATUS_SETTING_READ_FAIL;
|
|
}
|
|
}
|
|
|
|
if(axis_words)
|
|
{
|
|
// Move only the axes specified in secondary move.
|
|
for(idx = 0; idx < N_AXIS; idx++)
|
|
{
|
|
if(!(axis_words & (1<<idx)))
|
|
{
|
|
gc_block.values.ijk[idx] = gc_state.position[idx];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
axis_command = AXIS_COMMAND_NONE; // Set to none if no intermediate motion.
|
|
}
|
|
break;
|
|
|
|
case NON_MODAL_SET_HOME_0: // G28.1
|
|
case NON_MODAL_SET_HOME_1: // G30.1
|
|
// [G28.1/30.1 Errors]: Cutter compensation is enabled.
|
|
// NOTE: If axis words are passed here, they are interpreted as an implicit motion mode.
|
|
break;
|
|
|
|
case NON_MODAL_RESET_COORDINATE_OFFSET:
|
|
// NOTE: If axis words are passed here, they are interpreted as an implicit motion mode.
|
|
break;
|
|
|
|
case NON_MODAL_ABSOLUTE_OVERRIDE:
|
|
// [G53 Errors]: G0 and G1 are not active. Cutter compensation is enabled.
|
|
// NOTE: All explicit axis word commands are in this modal group. So no implicit check necessary.
|
|
if(!(gc_block.modal.motion == MOTION_MODE_SEEK || gc_block.modal.motion == MOTION_MODE_LINEAR))
|
|
{
|
|
return STATUS_GCODE_G53_INVALID_MOTION_MODE; // [G53 G0/1 not active]
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// [20. Motion modes ]:
|
|
if(gc_block.modal.motion == MOTION_MODE_NONE)
|
|
{
|
|
// [G80 Errors]: Axis word are programmed while G80 is active.
|
|
// NOTE: Even non-modal commands or TLO that use axis words will throw this strict error.
|
|
if(axis_words)
|
|
{
|
|
// [No axis words allowed]
|
|
return STATUS_GCODE_AXIS_WORDS_EXIST;
|
|
}
|
|
|
|
// Check remaining motion modes, if axis word are implicit (exist and not used by G10/28/30/92), or
|
|
// was explicitly commanded in the g-code block.
|
|
}
|
|
else if(axis_command == AXIS_COMMAND_MOTION_MODE)
|
|
{
|
|
if(gc_block.modal.motion == MOTION_MODE_SEEK)
|
|
{
|
|
// [G0 Errors]: Axis letter not configured or without real value (done.)
|
|
// Axis words are optional. If missing, set axis command flag to ignore execution.
|
|
if(!axis_words)
|
|
{
|
|
axis_command = AXIS_COMMAND_NONE;
|
|
}
|
|
|
|
// All remaining motion modes (all but G0 and G80), require a valid feed rate value. In units per mm mode,
|
|
// the value must be positive. In inverse time mode, a positive value must be passed with each block.
|
|
}
|
|
else
|
|
{
|
|
// Check if feed rate is defined for the motion modes that require it.
|
|
if(gc_block.values.f == 0.0)
|
|
{
|
|
// [Feed rate undefined]
|
|
return STATUS_GCODE_UNDEFINED_FEED_RATE;
|
|
}
|
|
|
|
switch(gc_block.modal.motion)
|
|
{
|
|
case MOTION_MODE_LINEAR:
|
|
// [G1 Errors]: Feed rate undefined. Axis letter not configured or without real value.
|
|
// Axis words are optional. If missing, set axis command flag to ignore execution.
|
|
if(!axis_words)
|
|
{
|
|
axis_command = AXIS_COMMAND_NONE;
|
|
}
|
|
break;
|
|
|
|
case MOTION_MODE_CW_ARC:
|
|
gc_parser_flags |= GC_PARSER_ARC_IS_CLOCKWISE; // No break intentional.
|
|
|
|
case MOTION_MODE_CCW_ARC:
|
|
// [G2/3 Errors All-Modes]: Feed rate undefined.
|
|
// [G2/3 Radius-Mode Errors]: No axis words in selected plane. Target point is same as current.
|
|
// [G2/3 Offset-Mode Errors]: No axis words and/or offsets in selected plane. The radius to the current
|
|
// point and the radius to the target point differs more than 0.002mm (EMC def. 0.5mm OR 0.005mm and 0.1% radius).
|
|
// [G2/3 Full-Circle-Mode Errors]: NOT SUPPORTED. Axis words exist. No offsets programmed. P must be an integer.
|
|
// NOTE: Both radius and offsets are required for arc tracing and are pre-computed with the error-checking.
|
|
|
|
if(!axis_words)
|
|
{
|
|
// [No axis words]
|
|
return STATUS_GCODE_NO_AXIS_WORDS;
|
|
}
|
|
|
|
if(!(axis_words & (BIT(axis_0)|BIT(axis_1))))
|
|
{
|
|
// [No axis words in plane]
|
|
return STATUS_GCODE_NO_AXIS_WORDS_IN_PLANE;
|
|
}
|
|
|
|
// Calculate the change in position along each selected axis
|
|
float x, y;
|
|
x = gc_block.values.xyz[axis_0]-gc_state.position[axis_0]; // Delta x between current position and target
|
|
y = gc_block.values.xyz[axis_1]-gc_state.position[axis_1]; // Delta y between current position and target
|
|
|
|
if(value_words & BIT(WORD_R)) { // Arc Radius Mode
|
|
BIT_FALSE(value_words, BIT(WORD_R));
|
|
if(isequal_position_vector(gc_state.position, gc_block.values.xyz))
|
|
{
|
|
// [Invalid target]
|
|
return STATUS_GCODE_INVALID_TARGET;
|
|
}
|
|
|
|
// Convert radius value to proper units.
|
|
if(gc_block.modal.units == UNITS_MODE_INCHES)
|
|
{
|
|
gc_block.values.r *= MM_PER_INCH;
|
|
}
|
|
/* We need to calculate the center of the circle that has the designated radius and passes
|
|
through both the current position and the target position. This method calculates the following
|
|
set of equations where [x,y] is the vector from current to target position, d == magnitude of
|
|
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
|
|
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
|
|
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
|
|
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
|
|
|
|
d^2 == x^2 + y^2
|
|
h^2 == r^2 - (d/2)^2
|
|
i == x/2 - y/d*h
|
|
j == y/2 + x/d*h
|
|
|
|
O <- [i,j]
|
|
- |
|
|
r - |
|
|
- |
|
|
- | h
|
|
- |
|
|
[0,0] -> C -----------------+--------------- T <- [x,y]
|
|
| <------ d/2 ---->|
|
|
|
|
C - Current position
|
|
T - Target position
|
|
O - center of circle that pass through both C and T
|
|
d - distance from C to T
|
|
r - designated radius
|
|
h - distance from center of CT to O
|
|
|
|
Expanding the equations:
|
|
|
|
d -> sqrt(x^2 + y^2)
|
|
h -> sqrt(4 * r^2 - x^2 - y^2)/2
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
|
|
Which can be written:
|
|
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
|
|
Which we for size and speed reasons optimize to:
|
|
|
|
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
|
|
i = (x - (y * h_x2_div_d))/2
|
|
j = (y + (x * h_x2_div_d))/2
|
|
*/
|
|
|
|
// First, use h_x2_div_d to compute 4*h^2 to check if it is negative or r is smaller
|
|
// than d. If so, the sqrt of a negative number is complex and error out.
|
|
float h_x2_div_d = 4.0 * gc_block.values.r*gc_block.values.r - x*x - y*y;
|
|
|
|
if(h_x2_div_d < 0)
|
|
{
|
|
// [Arc radius error]
|
|
return STATUS_GCODE_ARC_RADIUS_ERROR;
|
|
}
|
|
|
|
// Finish computing h_x2_div_d.
|
|
h_x2_div_d = -sqrt(h_x2_div_d)/hypot_f(x,y); // == -(h * 2 / d)
|
|
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
|
|
if(gc_block.modal.motion == MOTION_MODE_CCW_ARC)
|
|
{
|
|
h_x2_div_d = -h_x2_div_d;
|
|
}
|
|
|
|
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
|
|
the left hand circle will be generated - when it is negative the right hand circle is generated.
|
|
|
|
T <-- Target position
|
|
|
|
^
|
|
Clockwise circles with this center | Clockwise circles with this center will have
|
|
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
|
|
\ | /
|
|
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
|
|
|
|
|
|
|
|
C <-- Current position
|
|
*/
|
|
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
|
|
// even though it is advised against ever generating such circles in a single line of g-code. By
|
|
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
|
|
// travel and thus we get the unadvisably long arcs as prescribed.
|
|
if(gc_block.values.r < 0)
|
|
{
|
|
h_x2_div_d = -h_x2_div_d;
|
|
gc_block.values.r = -gc_block.values.r; // Finished with r. Set to positive for mc_arc
|
|
}
|
|
|
|
// Complete the operation by calculating the actual center of the arc
|
|
gc_block.values.ijk[axis_0] = 0.5*(x-(y*h_x2_div_d));
|
|
gc_block.values.ijk[axis_1] = 0.5*(y+(x*h_x2_div_d));
|
|
|
|
}
|
|
else { // Arc Center Format Offset Mode
|
|
if(!(ijk_words & (BIT(axis_0)|BIT(axis_1)))) {
|
|
// [No offsets in plane]
|
|
return STATUS_GCODE_NO_OFFSETS_IN_PLANE;
|
|
}
|
|
BIT_FALSE(value_words, (BIT(WORD_I) | BIT(WORD_J) | BIT(WORD_K)));
|
|
|
|
// Convert IJK values to proper units.
|
|
if(gc_block.modal.units == UNITS_MODE_INCHES) {
|
|
for(idx = 0; idx < N_LINEAR_AXIS; idx++) { // Axes indices are consistent, so loop may be used to save flash space.
|
|
if(ijk_words & BIT(idx)) {
|
|
gc_block.values.ijk[idx] *= MM_PER_INCH;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Arc radius from center to target
|
|
x -= gc_block.values.ijk[axis_0]; // Delta x between circle center and target
|
|
y -= gc_block.values.ijk[axis_1]; // Delta y between circle center and target
|
|
|
|
float target_r = hypot_f(x,y);
|
|
|
|
// Compute arc radius for mc_arc. Defined from current location to center.
|
|
gc_block.values.r = hypot_f(gc_block.values.ijk[axis_0], gc_block.values.ijk[axis_1]);
|
|
|
|
// Compute difference between current location and target radii for final error-checks.
|
|
float delta_r = fabs(target_r-gc_block.values.r);
|
|
if(delta_r > 0.005) {
|
|
if(delta_r > 0.5) {
|
|
// [Arc definition error] > 0.5mm
|
|
return STATUS_GCODE_INVALID_TARGET;
|
|
}
|
|
if(delta_r > (0.001*gc_block.values.r)) {
|
|
// [Arc definition error] > 0.005mm AND 0.1% radius
|
|
return STATUS_GCODE_INVALID_TARGET;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MOTION_MODE_PROBE_TOWARD_NO_ERROR: case MOTION_MODE_PROBE_AWAY_NO_ERROR:
|
|
gc_parser_flags |= GC_PARSER_PROBE_IS_NO_ERROR; // No break intentional.
|
|
|
|
case MOTION_MODE_PROBE_TOWARD:
|
|
case MOTION_MODE_PROBE_AWAY:
|
|
if((gc_block.modal.motion == MOTION_MODE_PROBE_AWAY) || (gc_block.modal.motion == MOTION_MODE_PROBE_AWAY_NO_ERROR))
|
|
{
|
|
gc_parser_flags |= GC_PARSER_PROBE_IS_AWAY;
|
|
}
|
|
// [G38 Errors]: Target is same current. No axis words. Cutter compensation is enabled. Feed rate
|
|
// is undefined. Probe is triggered. NOTE: Probe check moved to probe cycle. Instead of returning
|
|
// an error, it issues an alarm to prevent further motion to the probe. It's also done there to
|
|
// allow the planner buffer to empty and move off the probe trigger before another probing cycle.
|
|
if(!axis_words)
|
|
{
|
|
// [No axis words]
|
|
return STATUS_GCODE_NO_AXIS_WORDS;
|
|
}
|
|
|
|
if(isequal_position_vector(gc_state.position, gc_block.values.xyz))
|
|
{
|
|
// [Invalid target]
|
|
return STATUS_GCODE_INVALID_TARGET;
|
|
}
|
|
break;
|
|
|
|
case MOTION_MODE_DRILL: case MOTION_MODE_DRILL_DWELL: case MOTION_MODE_DRILL_PECK:
|
|
if(BIT_TRUE(value_words, (BIT(WORD_L))))
|
|
{
|
|
}
|
|
BIT_FALSE(value_words, BIT(WORD_L));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// [21. Program flow ]: No error checks required.
|
|
|
|
// [0. Non-specific error-checks]: Complete unused value words check, i.e. IJK used when in arc
|
|
// radius mode, or axis words that aren't used in the block.
|
|
if(gc_parser_flags & GC_PARSER_JOG_MOTION)
|
|
{
|
|
// Jogging only uses the F feed rate and XYZ value words. N is valid, but S and T are invalid.
|
|
BIT_FALSE(value_words, (BIT(WORD_N)|BIT(WORD_F)));
|
|
}
|
|
else
|
|
{
|
|
BIT_FALSE(value_words, (BIT(WORD_N)|BIT(WORD_F)|BIT(WORD_S)|BIT(WORD_T))); // Remove single-meaning value words.
|
|
}
|
|
|
|
if(axis_command)
|
|
{
|
|
// Remove axis words.
|
|
BIT_FALSE(value_words, (BIT(WORD_X)|BIT(WORD_Y)|BIT(WORD_Z)|BIT(WORD_A)|BIT(WORD_B)));
|
|
}
|
|
|
|
if(value_words)
|
|
{
|
|
// [Unused words]
|
|
return STATUS_GCODE_UNUSED_WORDS;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------------------
|
|
STEP 4: EXECUTE!!
|
|
Assumes that all error-checking has been completed and no failure modes exist. We just
|
|
need to update the state and execute the block according to the order-of-execution.
|
|
*/
|
|
|
|
// Initialize planner data struct for motion blocks.
|
|
Planner_LineData_t plan_data;
|
|
Planner_LineData_t *pl_data = &plan_data;
|
|
memset(pl_data, 0, sizeof(Planner_LineData_t)); // Zero pl_data struct
|
|
|
|
// Intercept jog commands and complete error checking for valid jog commands and execute.
|
|
// NOTE: G-code parser state is not updated, except the position to ensure sequential jog
|
|
// targets are computed correctly. The final parser position after a jog is updated in
|
|
// protocol_execute_realtime() when jogging completes or is canceled.
|
|
if(gc_parser_flags & GC_PARSER_JOG_MOTION)
|
|
{
|
|
// Only distance and unit modal commands and G53 absolute override command are allowed.
|
|
// NOTE: Feed rate word and axis word checks have already been performed in STEP 3.
|
|
if(command_words & ~(BIT(MODAL_GROUP_G3) | BIT(MODAL_GROUP_G6) | BIT(MODAL_GROUP_G0)))
|
|
{
|
|
return STATUS_INVALID_JOG_COMMAND;
|
|
}
|
|
|
|
if(!(gc_block.non_modal_command == NON_MODAL_ABSOLUTE_OVERRIDE || gc_block.non_modal_command == NON_MODAL_NO_ACTION))
|
|
{
|
|
return STATUS_INVALID_JOG_COMMAND;
|
|
}
|
|
|
|
// Initialize planner data to current spindle and coolant modal state.
|
|
pl_data->spindle_speed = gc_state.spindle_speed;
|
|
plan_data.condition = (gc_state.modal.spindle | gc_state.modal.coolant);
|
|
|
|
uint8_t status = Jog_Execute(&plan_data, &gc_block);
|
|
if(status == STATUS_OK)
|
|
{
|
|
memcpy(gc_state.position, gc_block.values.xyz, sizeof(gc_block.values.xyz));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
// If in laser mode, setup laser power based on current and past parser conditions.
|
|
if(BIT_IS_TRUE(settings.flags, BITFLAG_LASER_MODE))
|
|
{
|
|
if(!((gc_block.modal.motion == MOTION_MODE_LINEAR) || (gc_block.modal.motion == MOTION_MODE_CW_ARC) || (gc_block.modal.motion == MOTION_MODE_CCW_ARC)))
|
|
{
|
|
gc_parser_flags |= GC_PARSER_LASER_DISABLE;
|
|
}
|
|
|
|
// Any motion mode with axis words is allowed to be passed from a spindle speed update.
|
|
// NOTE: G1 and G0 without axis words sets axis_command to none. G28/30 are intentionally omitted.
|
|
// TODO: Check sync conditions for M3 enabled motions that don't enter the planner. (zero length).
|
|
if(axis_words && (axis_command == AXIS_COMMAND_MOTION_MODE))
|
|
{
|
|
gc_parser_flags |= GC_PARSER_LASER_ISMOTION;
|
|
}
|
|
else
|
|
{
|
|
// M3 constant power laser requires planner syncs to update the laser when changing between
|
|
// a G1/2/3 motion mode state and vice versa when there is no motion in the line.
|
|
if(gc_state.modal.spindle == SPINDLE_ENABLE_CW)
|
|
{
|
|
if((gc_state.modal.motion == MOTION_MODE_LINEAR) || (gc_state.modal.motion == MOTION_MODE_CW_ARC) || (gc_state.modal.motion == MOTION_MODE_CCW_ARC))
|
|
{
|
|
if (BIT_IS_TRUE(gc_parser_flags, GC_PARSER_LASER_DISABLE))
|
|
{
|
|
gc_parser_flags |= GC_PARSER_LASER_FORCE_SYNC; // Change from G1/2/3 motion mode.
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// When changing to a G1 motion mode without axis words from a non-G1/2/3 motion mode.
|
|
if(BIT_IS_FALSE(gc_parser_flags, GC_PARSER_LASER_DISABLE))
|
|
{
|
|
gc_parser_flags |= GC_PARSER_LASER_FORCE_SYNC;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// [0. Non-specific/common error-checks and miscellaneous setup]:
|
|
// NOTE: If no line number is present, the value is zero.
|
|
gc_state.line_number = gc_block.values.n;
|
|
pl_data->line_number = gc_state.line_number; // Record data for planner use.
|
|
|
|
// [1. Comments feedback ]: NOT SUPPORTED
|
|
|
|
// [2. Set feed rate mode ]:
|
|
gc_state.modal.feed_rate = gc_block.modal.feed_rate;
|
|
if(gc_state.modal.feed_rate)
|
|
{
|
|
// Set condition flag for planner use.
|
|
pl_data->condition |= PL_COND_FLAG_INVERSE_TIME;
|
|
}
|
|
|
|
// [3. Set feed rate ]:
|
|
gc_state.feed_rate = gc_block.values.f; // Always copy this value. See feed rate error-checking.
|
|
pl_data->feed_rate = gc_state.feed_rate; // Record data for planner use.
|
|
|
|
// [4. Set spindle speed ]:
|
|
if((gc_state.spindle_speed != gc_block.values.s) || BIT_IS_TRUE(gc_parser_flags,GC_PARSER_LASER_FORCE_SYNC))
|
|
{
|
|
if(gc_state.modal.spindle != SPINDLE_DISABLE)
|
|
{
|
|
if(BIT_IS_FALSE(gc_parser_flags, GC_PARSER_LASER_ISMOTION))
|
|
{
|
|
if(BIT_IS_TRUE(gc_parser_flags, GC_PARSER_LASER_DISABLE))
|
|
{
|
|
Spindle_Sync(gc_state.modal.spindle, 0.0);
|
|
}
|
|
else
|
|
{
|
|
Spindle_Sync(gc_state.modal.spindle, gc_block.values.s);
|
|
}
|
|
}
|
|
}
|
|
|
|
gc_state.spindle_speed = gc_block.values.s; // Update spindle speed state.
|
|
}
|
|
|
|
// NOTE: Pass zero spindle speed for all restricted laser motions.
|
|
if(BIT_IS_FALSE(gc_parser_flags, GC_PARSER_LASER_DISABLE))
|
|
{
|
|
pl_data->spindle_speed = gc_state.spindle_speed; // Record data for planner use.
|
|
}
|
|
// else { pl_data->spindle_speed = 0.0; } // Initialized as zero already.
|
|
|
|
// [5. Select tool ]: NOT SUPPORTED. Only tracks tool value.
|
|
gc_state.tool = gc_block.values.t;
|
|
|
|
// [6. Change tool ]:
|
|
if(change_tool && (settings.tool_change > 0))
|
|
{
|
|
if(sys.is_homed)
|
|
{
|
|
TC_ChangeCurrentTool();
|
|
}
|
|
else
|
|
{
|
|
return STATUS_MACHINE_NOT_HOMED;
|
|
}
|
|
}
|
|
|
|
// [7. Spindle control ]:
|
|
if(gc_state.modal.spindle != gc_block.modal.spindle)
|
|
{
|
|
// Update spindle control and apply spindle speed when enabling it in this block.
|
|
// NOTE: All spindle state changes are synced, even in laser mode. Also, pl_data,
|
|
// rather than gc_state, is used to manage laser state for non-laser motions.
|
|
Spindle_Sync(gc_block.modal.spindle, pl_data->spindle_speed);
|
|
gc_state.modal.spindle = gc_block.modal.spindle;
|
|
}
|
|
|
|
pl_data->condition |= gc_state.modal.spindle; // Set condition flag for planner use.
|
|
|
|
// [8. Coolant control ]:
|
|
if (gc_state.modal.coolant != gc_block.modal.coolant)
|
|
{
|
|
// NOTE: Coolant M-codes are modal. Only one command per line is allowed. But, multiple states
|
|
// can exist at the same time, while coolant disable clears all states.
|
|
Coolant_Sync(gc_block.modal.coolant);
|
|
gc_state.modal.coolant = gc_block.modal.coolant;
|
|
}
|
|
pl_data->condition |= gc_state.modal.coolant; // Set condition flag for planner use.
|
|
|
|
// [9. Override control ]: NOT SUPPORTED. Always enabled. Except for a Grbl-only parking control.
|
|
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
|
|
if(gc_state.modal.override != gc_block.modal.override)
|
|
{
|
|
gc_state.modal.override = gc_block.modal.override;
|
|
MC_OverrideCtrlUpdate(gc_state.modal.override);
|
|
}
|
|
#endif
|
|
|
|
// [10. Dwell ]:
|
|
if(gc_block.non_modal_command == NON_MODAL_DWELL)
|
|
{
|
|
MC_Dwell(gc_block.values.p);
|
|
}
|
|
|
|
// [11. Set active plane ]:
|
|
gc_state.modal.plane_select = gc_block.modal.plane_select;
|
|
|
|
// [12. Set length units ]:
|
|
gc_state.modal.units = gc_block.modal.units;
|
|
|
|
// [13. Cutter radius compensation ]: G41/42 NOT SUPPORTED
|
|
// gc_state.modal.cutter_comp = gc_block.modal.cutter_comp; // NOTE: Not needed since always disabled.
|
|
|
|
// [14. Cutter length compensation ]: G43.1 and G49 supported. G43 NOT SUPPORTED.
|
|
// NOTE: If G43 were supported, its operation wouldn't be any different from G43.1 in terms
|
|
// of execution. The error-checking step would simply load the offset value into the correct
|
|
// axis of the block XYZ value array.
|
|
if(axis_command == AXIS_COMMAND_TOOL_LENGTH_OFFSET) { // Indicates a change.
|
|
gc_state.modal.tool_length = gc_block.modal.tool_length;
|
|
if (gc_state.modal.tool_length == TOOL_LENGTH_OFFSET_CANCEL) { // G49
|
|
gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS] = 0.0;
|
|
}
|
|
// else G43.1
|
|
if(gc_state.tool_length_offset != gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS])
|
|
{
|
|
gc_state.tool_length_offset = gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS];
|
|
System_FlagWcoChange();
|
|
}
|
|
}
|
|
|
|
// [15. Coordinate system selection ]:
|
|
if(gc_state.modal.coord_select != gc_block.modal.coord_select)
|
|
{
|
|
gc_state.modal.coord_select = gc_block.modal.coord_select;
|
|
memcpy(gc_state.coord_system, block_coord_system, N_AXIS*sizeof(float));
|
|
System_FlagWcoChange();
|
|
}
|
|
|
|
// [16. Set path control mode ]: G61.1/G64 NOT SUPPORTED
|
|
// gc_state.modal.control = gc_block.modal.control; // NOTE: Always default.
|
|
|
|
// [17. Set distance mode ]:
|
|
gc_state.modal.distance = gc_block.modal.distance;
|
|
|
|
// [18. Set retract mode ]:
|
|
gc_state.modal.retract = gc_block.modal.retract;
|
|
|
|
// [19. Go to predefined position, Set G10, or Set axis offsets ]:
|
|
switch(gc_block.non_modal_command)
|
|
{
|
|
case NON_MODAL_SET_COORDINATE_DATA:
|
|
Settings_WriteCoordData(coord_select,gc_block.values.ijk);
|
|
// Update system coordinate system if currently active.
|
|
if(gc_state.modal.coord_select == coord_select)
|
|
{
|
|
memcpy(gc_state.coord_system, gc_block.values.ijk, N_AXIS*sizeof(float));
|
|
System_FlagWcoChange();
|
|
}
|
|
break;
|
|
|
|
case NON_MODAL_GO_HOME_0: case NON_MODAL_GO_HOME_1:
|
|
// Move to intermediate position before going home. Obeys current coordinate system and offsets
|
|
// and absolute and incremental modes.
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
if(axis_command)
|
|
{
|
|
MC_Line(gc_block.values.xyz, pl_data);
|
|
}
|
|
|
|
MC_Line(gc_block.values.ijk, pl_data);
|
|
memcpy(gc_state.position, gc_block.values.ijk, N_AXIS*sizeof(float));
|
|
break;
|
|
|
|
case NON_MODAL_SET_HOME_0:
|
|
Settings_WriteCoordData(SETTING_INDEX_G28, gc_state.position);
|
|
break;
|
|
|
|
case NON_MODAL_SET_HOME_1:
|
|
Settings_WriteCoordData(SETTING_INDEX_G30, gc_state.position);
|
|
break;
|
|
|
|
case NON_MODAL_SET_COORDINATE_OFFSET:
|
|
memcpy(gc_state.coord_offset, gc_block.values.xyz, sizeof(gc_block.values.xyz));
|
|
System_FlagWcoChange();
|
|
break;
|
|
|
|
case NON_MODAL_RESET_COORDINATE_OFFSET:
|
|
clear_vector(gc_state.coord_offset); // Disable G92 offsets by zeroing offset vector.
|
|
System_FlagWcoChange();
|
|
break;
|
|
}
|
|
|
|
|
|
// [20. Motion modes ]:
|
|
// NOTE: Commands G10,G28,G30,G92 lock out and prevent axis words from use in motion modes.
|
|
// Enter motion modes only if there are axis words or a motion mode command word in the block.
|
|
gc_state.modal.motion = gc_block.modal.motion;
|
|
if(gc_state.modal.motion != MOTION_MODE_NONE)
|
|
{
|
|
if(axis_command == AXIS_COMMAND_MOTION_MODE)
|
|
{
|
|
uint8_t gc_update_pos = GC_UPDATE_POS_TARGET;
|
|
if(gc_state.modal.motion == MOTION_MODE_LINEAR)
|
|
{
|
|
MC_Line(gc_block.values.xyz, pl_data);
|
|
}
|
|
else if(gc_state.modal.motion == MOTION_MODE_SEEK)
|
|
{
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
MC_Line(gc_block.values.xyz, pl_data);
|
|
}
|
|
else if((gc_state.modal.motion == MOTION_MODE_CW_ARC) || (gc_state.modal.motion == MOTION_MODE_CCW_ARC))
|
|
{
|
|
MC_Arc(gc_block.values.xyz, pl_data, gc_state.position, gc_block.values.ijk, gc_block.values.r,
|
|
axis_0, axis_1, axis_linear, BIT_IS_TRUE(gc_parser_flags, GC_PARSER_ARC_IS_CLOCKWISE));
|
|
}
|
|
else if(gc_state.modal.motion == MOTION_MODE_DRILL || gc_state.modal.motion == MOTION_MODE_DRILL_DWELL || gc_state.modal.motion == MOTION_MODE_DRILL_PECK)
|
|
{
|
|
float xyz[N_AXIS] = {0.0};
|
|
float clear_z = gc_block.values.r + gc_state.coord_system[Z_AXIS] + gc_state.coord_offset[Z_AXIS];
|
|
float delta_x = 0.0;
|
|
float delta_y = 0.0;
|
|
|
|
if(gc_state.modal.distance == DISTANCE_MODE_INCREMENTAL)
|
|
{
|
|
clear_z += old_xyz[Z_AXIS];
|
|
gc_block.values.xyz[Z_AXIS] = clear_z + (gc_block.values.xyz[Z_AXIS] - old_xyz[Z_AXIS]);
|
|
|
|
delta_x = gc_block.values.xyz[X_AXIS] - old_xyz[X_AXIS];
|
|
delta_y = gc_block.values.xyz[Y_AXIS] - old_xyz[Y_AXIS];
|
|
}
|
|
else
|
|
{
|
|
clear_z += gc_state.tool_length_offset;
|
|
}
|
|
|
|
if(clear_z < gc_block.values.xyz[Z_AXIS])
|
|
{
|
|
// Error
|
|
return STATUS_GCODE_INVALID_TARGET;
|
|
}
|
|
|
|
//-- [G81 - G83] --//
|
|
|
|
// 0. Check if old_z < clear_z
|
|
if(old_xyz[Z_AXIS] < clear_z)
|
|
{
|
|
// Move old_z to clear_z
|
|
memcpy(xyz, old_xyz, N_AXIS*sizeof(float));
|
|
xyz[Z_AXIS] = clear_z;
|
|
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
MC_Line(xyz, pl_data);
|
|
}
|
|
else
|
|
{
|
|
// Reset z to old/current z
|
|
xyz[Z_AXIS] = old_xyz[Z_AXIS];
|
|
}
|
|
|
|
if(gc_block.values.l == 0)
|
|
{
|
|
// Force at least one iteration of loop
|
|
gc_block.values.l = 1;
|
|
}
|
|
|
|
for(uint8_t repeat = 0; repeat < gc_block.values.l; repeat++)
|
|
{
|
|
// 1. Rapid move to XY (XY)
|
|
xyz[X_AXIS] = gc_block.values.xyz[X_AXIS] + (delta_x*repeat);
|
|
xyz[Y_AXIS] = gc_block.values.xyz[Y_AXIS] + (delta_y*repeat);
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
MC_Line(xyz, pl_data);
|
|
|
|
// 2. Rapid move to R (Z)
|
|
xyz[Z_AXIS] = clear_z;
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
MC_Line(xyz, pl_data);
|
|
|
|
if(gc_state.modal.motion != MOTION_MODE_DRILL_PECK)
|
|
{
|
|
//-- G81 -- G82 --//
|
|
// 3. Move the Z-axis at the current feed rate to the Z position.
|
|
pl_data->condition &= ~PL_COND_FLAG_RAPID_MOTION; // Clear rapid move
|
|
xyz[Z_AXIS] = gc_block.values.xyz[Z_AXIS];
|
|
MC_Line(xyz, pl_data);
|
|
}
|
|
else
|
|
{
|
|
uint8_t exit = 0;
|
|
//-- G83 --//
|
|
for(float curr_z = clear_z - gc_block.values.q; exit == 0; curr_z -= gc_block.values.q)
|
|
{
|
|
// Check if target depth exceeds final depth
|
|
if(curr_z <= gc_block.values.xyz[Z_AXIS])
|
|
{
|
|
curr_z = gc_block.values.xyz[Z_AXIS];
|
|
exit = 1;
|
|
}
|
|
|
|
// Move the Z-axis at the current feed rate to the Z position.
|
|
pl_data->condition &= ~PL_COND_FLAG_RAPID_MOTION; // Clear rapid move
|
|
xyz[Z_AXIS] = curr_z;
|
|
MC_Line(xyz, pl_data);
|
|
|
|
// Rapid move to R
|
|
xyz[Z_AXIS] = clear_z;
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
MC_Line(xyz, pl_data);
|
|
|
|
if(exit == 0)
|
|
{
|
|
// Prepare next hole
|
|
// Rapid move to bottom of hole (backed off a bit)
|
|
xyz[Z_AXIS] = curr_z + 0.4;
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
MC_Line(xyz, pl_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(gc_state.modal.motion == MOTION_MODE_DRILL_DWELL)
|
|
{
|
|
//-- G82 --//
|
|
MC_Dwell(gc_block.values.p);
|
|
}
|
|
|
|
// 4. The Z-axis does a rapid move to clear Z.
|
|
if((gc_state.modal.retract == RETRACT_OLD_Z) && clear_z < old_xyz[Z_AXIS])
|
|
{
|
|
//-- G98 --//
|
|
// Retract to OLD_Z
|
|
xyz[Z_AXIS] = old_xyz[Z_AXIS];
|
|
}
|
|
else
|
|
{
|
|
//-- G99 --//
|
|
// Retract to r
|
|
xyz[Z_AXIS] = clear_z;
|
|
}
|
|
|
|
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
|
|
MC_Line(xyz, pl_data);
|
|
}
|
|
// Update position
|
|
memcpy(gc_block.values.xyz, xyz, N_AXIS*sizeof(float));
|
|
}
|
|
else
|
|
{
|
|
// NOTE: gc_block.values.xyz is returned from mc_probe_cycle with the updated position value. So
|
|
// upon a successful probing cycle, the machine position and the returned value should be the same.
|
|
#ifndef ALLOW_FEED_OVERRIDE_DURING_PROBE_CYCLES
|
|
pl_data->condition |= PL_COND_FLAG_NO_FEED_OVERRIDE;
|
|
#endif
|
|
gc_update_pos = MC_ProbeCycle(gc_block.values.xyz, pl_data, gc_parser_flags);
|
|
}
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
if(gc_update_pos == GC_UPDATE_POS_TARGET)
|
|
{
|
|
memcpy(gc_state.position, gc_block.values.xyz, sizeof(gc_block.values.xyz)); // gc_state.position[] = gc_block.values.xyz[]
|
|
}
|
|
else if (gc_update_pos == GC_UPDATE_POS_SYSTEM)
|
|
{
|
|
GC_SyncPosition(); // gc_state.position[] = sys_position
|
|
} // == GC_UPDATE_POS_NONE
|
|
}
|
|
}
|
|
|
|
// [21. Program flow ]:
|
|
// M0,M1,M2,M30: Perform non-running program flow actions. During a program pause, the buffer may
|
|
// refill and can only be resumed by the cycle start run-time command.
|
|
gc_state.modal.program_flow = gc_block.modal.program_flow;
|
|
if(gc_state.modal.program_flow)
|
|
{
|
|
Protocol_BufferSynchronize(); // Sync and finish all remaining buffered motions before moving on.
|
|
|
|
if(gc_state.modal.program_flow == PROGRAM_FLOW_PAUSED)
|
|
{
|
|
if(sys.state != STATE_CHECK_MODE)
|
|
{
|
|
System_SetExecStateFlag(EXEC_FEED_HOLD); // Use feed hold for program pause.
|
|
Protocol_ExecuteRealtime(); // Execute suspend.
|
|
}
|
|
}
|
|
else { // == PROGRAM_FLOW_COMPLETED
|
|
// Upon program complete, only a subset of g-codes reset to certain defaults, according to
|
|
// LinuxCNC's program end descriptions and testing. Only modal groups [G-code 1,2,3,5,7,12]
|
|
// and [M-code 7,8,9] reset to [G1,G17,G90,G94,G40,G54,M5,M9,M48]. The remaining modal groups
|
|
// [G-code 4,6,8,10,13,14,15] and [M-code 4,5,6] and the modal words [F,S,T,H] do not reset.
|
|
gc_state.modal.motion = MOTION_MODE_LINEAR;
|
|
gc_state.modal.plane_select = PLANE_SELECT_XY;
|
|
gc_state.modal.distance = DISTANCE_MODE_ABSOLUTE;
|
|
gc_state.modal.feed_rate = FEED_RATE_MODE_UNITS_PER_MIN;
|
|
// gc_state.modal.cutter_comp = CUTTER_COMP_DISABLE; // Not supported.
|
|
gc_state.modal.coord_select = 0; // G54
|
|
gc_state.modal.spindle = SPINDLE_DISABLE;
|
|
gc_state.modal.coolant = COOLANT_DISABLE;
|
|
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
|
|
#ifdef DEACTIVATE_PARKING_UPON_INIT
|
|
gc_state.modal.override = OVERRIDE_DISABLED;
|
|
#else
|
|
gc_state.modal.override = OVERRIDE_PARKING_MOTION;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef RESTORE_OVERRIDES_AFTER_PROGRAM_END
|
|
sys.f_override = DEFAULT_FEED_OVERRIDE;
|
|
sys.r_override = DEFAULT_RAPID_OVERRIDE;
|
|
sys.spindle_speed_ovr = DEFAULT_SPINDLE_SPEED_OVERRIDE;
|
|
#endif
|
|
|
|
// Execute coordinate change and spindle/coolant stop.
|
|
if(sys.state != STATE_CHECK_MODE)
|
|
{
|
|
if(!(Settings_ReadCoordData(gc_state.modal.coord_select, gc_state.coord_system)))
|
|
{
|
|
return STATUS_SETTING_READ_FAIL;
|
|
}
|
|
|
|
System_FlagWcoChange(); // Set to refresh immediately just in case something altered.
|
|
Spindle_SetState(SPINDLE_DISABLE, 0.0);
|
|
Coolant_SetState(COOLANT_DISABLE);
|
|
}
|
|
// Reset tool change - May not be in accordance with LinuxCNC
|
|
TC_Init();
|
|
|
|
Report_FeedbackMessage(MESSAGE_PROGRAM_END);
|
|
}
|
|
|
|
gc_state.modal.program_flow = PROGRAM_FLOW_RUNNING; // Reset program flow.
|
|
}
|
|
|
|
// TODO: % to denote start of program.
|
|
|
|
return STATUS_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
Not supported:
|
|
|
|
- Canned cycles
|
|
- Tool radius compensation
|
|
- Evaluation of expressions
|
|
- Variables
|
|
- Override control (TBD)
|
|
- Tool changes
|
|
- Switches
|
|
|
|
(*) Indicates optional parameter, enabled through config.h and re-compile
|
|
group 0 = {G92.2, G92.3} (Non modal: Cancel and re-enable G92 offsets)
|
|
group 1 = {G81 - G89} (Motion modes: Canned cycles)
|
|
group 4 = {M1} (Optional stop, ignored)
|
|
group 6 = {M6} (Tool change)
|
|
group 7 = {G41, G42} cutter radius compensation (G40 is supported)
|
|
group 8 = {G43} tool length offset (G43.1/G49 are supported)
|
|
group 8 = {M7*} enable mist coolant (* Compile-option)
|
|
group 9 = {M48, M49, M56*} enable/disable override switches (* Compile-option)
|
|
group 10 = {G98, G99} return mode canned cycles
|
|
group 13 = {G61.1, G64} path control mode (G61 is supported)
|
|
*/
|