GRBL-Advanced/HAL/SPI/SPI.c

277 wiersze
7.5 KiB
C

#include "SPI.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_gpio.h"
void Spi_Init(SPI_TypeDef *SPIx, SPI_Mode mode)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
switch(mode)
{
case SPI_MODE1:
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
break;
case SPI_MODE2:
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
break;
case SPI_MODE3:
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
break;
default:
// Mode0 default
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
break;
}
if(SPI1 == SPIx) {
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// Periph clock enable
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1);
// Configure SPI pins: SCK, MOSI
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Configure pins: MISO
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Reset SPI Interface
SPI_I2S_DeInit(SPIx);
// SPI configuration
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(SPIx, &SPI_InitStructure);
}
else if(SPI2 == SPIx) {
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
// Periph clock enable
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource13, GPIO_AF_SPI2);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource14, GPIO_AF_SPI2);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource15, GPIO_AF_SPI2);
// Configure SPI pins: SCK, MOSI
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// Configure pins: MISO
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// Reset SPI Interface
SPI_I2S_DeInit(SPIx);
// SPI configuration
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(SPIx, &SPI_InitStructure);
}
else if(SPI3 == SPIx) {
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
// Periph clock enable
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_SPI3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_SPI3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_SPI3);
// Configure SPI pins: SCK, MOSI
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOC, &GPIO_InitStructure);
// Configure pins: MISO
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_Init(GPIOC, &GPIO_InitStructure);
// Reset SPI Interface
SPI_I2S_DeInit(SPIx);
// SPI configuration
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(SPIx, &SPI_InitStructure);
// Initialize chip select
RCC_AHB1PeriphClockCmd(SPI3_CS_GPIO_CLK, ENABLE);
// Configure CS pin
GPIO_InitStructure.GPIO_Pin = SPI3_CS_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(SPI3_CS_GPIO_PORT, &GPIO_InitStructure);
// Deselect chip
GPIO_SetBits(SPI3_CS_GPIO_PORT, SPI3_CS_PIN);
}
SPI_CalculateCRC(SPIx, DISABLE);
// Enable the SPI
SPI_Cmd(SPIx, ENABLE);
}
uint8_t Spi_ReadByte(SPI_TypeDef *SPIx)
{
return Spi_WriteByte(SPIx, 0xFF);
}
uint8_t Spi_WriteByte(SPI_TypeDef *SPIx, uint8_t _data)
{
uint16_t timeout = 0xFFF;
// Loop while DR register is not empty
while(SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_TXE) == RESET);
// Clear rx register
SPI_I2S_ReceiveData(SPIx);
// Send byte through the SPIx peripheral
SPI_I2S_SendData(SPIx, _data);
while((SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_RXNE) == RESET) && timeout--);
// Return the byte read from the SPI bus
return (uint8_t)SPI_I2S_ReceiveData(SPIx);
}
void Spi_ReadByteArray(SPI_TypeDef *SPIx, uint8_t *_buffer, uint16_t _len)
{
uint16_t i = 0;
uint16_t timeout = 0xFFF;
// Clear rx register
SPI_I2S_ReceiveData(SPIx);
for(i = 0; i < _len; ++i)
{
// Loop while DR register is not empty
while(SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_TXE) == RESET);
// Send byte through the SPIx peripheral
SPI_I2S_SendData(SPIx, 0xFF);
while((SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_RXNE) == RESET) && timeout--);
_buffer[i] = (uint8_t)SPI_I2S_ReceiveData(SPIx);
}
}
void Spi_WriteDataArray(SPI_TypeDef *SPIx, uint8_t *_data, uint16_t _len)
{
uint16_t i = 0;
for(i = 0; i < _len; ++i)
{
// Loop while DR register is not empty
while(SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_TXE) == RESET);
// Send byte through the SPIx peripheral
SPI_I2S_SendData(SPIx, _data[i]);
}
while(SPI_I2S_GetFlagStatus(SPIx, SPI_I2S_FLAG_TXE) == RESET);
// Clear rx register
SPI_I2S_ReceiveData(SPIx);
}
void Spi_SetPrescaler(SPI_TypeDef *SPIx, uint16_t prescaler)
{
SPI_Cmd(SPIx, DISABLE);
// Read CR1 and clear baud control
uint16_t tmpreg = SPIx->CR1 & 0xFFC7;
tmpreg |= prescaler;
SPIx->CR1 = tmpreg;
SPI_Cmd(SPIx, ENABLE);
}
void Spi_ChipSelect(SPI_TypeDef *SPIx, bool select)
{
if(select)
{
if(SPIx == SPI1)
{
GPIO_ResetBits(SPI1_CS_GPIO_PORT, SPI1_CS_PIN);
}
else if(SPIx == SPI2)
{
GPIO_ResetBits(SPI2_CS_GPIO_PORT, SPI2_CS_PIN);
}
else if(SPIx == SPI3)
{
GPIO_ResetBits(SPI3_CS_GPIO_PORT, SPI3_CS_PIN);
}
}
else
{
if(SPIx == SPI1)
{
GPIO_SetBits(SPI1_CS_GPIO_PORT, SPI1_CS_PIN);
}
else if(SPIx == SPI2)
{
GPIO_SetBits(SPI2_CS_GPIO_PORT, SPI2_CS_PIN);
}
else if(SPIx == SPI3)
{
GPIO_SetBits(SPI3_CS_GPIO_PORT, SPI3_CS_PIN);
}
}
}