/* System.c - Handles system level commands and real-time processes Part of Grbl-Advanced Copyright (c) 2014-2016 Sungeun K. Jeon for Gnea Research LLC Copyright (c) 2017 Patrick F. Grbl-Advanced is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl-Advanced is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl-Advanced. If not, see . */ #include #include "Config.h" #include "GCode.h" #include "GPIO.h" #include "MotionControl.h" #include "Protocol.h" #include "Report.h" #include "Settings.h" #include "Stepper.h" #include "System.h" #include "System32.h" void System_Init(void) { GPIO_InitGPIO(GPIO_SYSTEM); } void System_Clear(void) { memset(&sys, 0, sizeof(System_t)); // Clear system struct variable. sys.f_override = DEFAULT_FEED_OVERRIDE; // Set to 100% sys.r_override = DEFAULT_RAPID_OVERRIDE; // Set to 100% sys.spindle_speed_ovr = DEFAULT_SPINDLE_SPEED_OVERRIDE; // Set to 100% } void System_ResetPosition(void) { // Clear machine position. memset(sys_position, 0 , sizeof(sys_position)); } // Returns control pin state as a uint8 bitfield. Each bit indicates the input pin state, where // triggered is 1 and not triggered is 0. Invert mask is applied. Bitfield organization is // defined by the CONTROL_PIN_INDEX in the header file. uint8_t System_GetControlState(void) { uint8_t control_state = 0; uint8_t pin = ((GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0)< 0) uint8_t n; for(n = 0; n < N_STARTUP_LINE; n++) { if(!(Settings_ReadStartupLine(n, line))) { line[0] = 0; Report_ExecuteStartupMessage(line, STATUS_SETTING_READ_FAIL); } else { if(line[0] != 0) { uint8_t status_code = GC_ExecuteLine(line); Report_ExecuteStartupMessage(line,status_code); } } } #else (void)line; #endif } // Directs and executes one line of formatted input from protocol_process. While mostly // incoming streaming g-code blocks, this also executes Grbl internal commands, such as // settings, initiating the homing cycle, and toggling switch states. This differs from // the realtime command module by being susceptible to when Grbl is ready to execute the // next line during a cycle, so for switches like block delete, the switch only effects // the lines that are processed afterward, not necessarily real-time during a cycle, // since there are motions already stored in the buffer. However, this 'lag' should not // be an issue, since these commands are not typically used during a cycle. uint8_t System_ExecuteLine(char *line) { uint8_t char_counter = 1; uint8_t helper_var = 0; // Helper variable float parameter, value; switch(line[char_counter]) { case 0: Report_GrblHelp(); break; case 'J': // Jogging // Execute only if in IDLE or JOG states. if(sys.state != STATE_IDLE && sys.state != STATE_JOG) { return STATUS_IDLE_ERROR; } if(line[2] != '=') { return STATUS_INVALID_STATEMENT; } return GC_ExecuteLine(line); // NOTE: $J= is ignored inside g-code parser and used to detect jog motions. break; case '$': case 'G': case 'C': case 'X': if(line[2] != 0) { return(STATUS_INVALID_STATEMENT); } switch(line[1]) { case '$': // Prints Grbl settings if(sys.state & (STATE_CYCLE | STATE_HOLD)) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print. else { Report_GrblSettings(); } break; case 'G': // Prints gcode parser state // TODO: Move this to realtime commands for GUIs to request this data during suspend-state. Report_GCodeModes(); break; case 'C': // Set check g-code mode [IDLE/CHECK] // Perform reset when toggling off. Check g-code mode should only work if Grbl // is idle and ready, regardless of alarm locks. This is mainly to keep things // simple and consistent. if(sys.state == STATE_CHECK_MODE ) { MC_Reset(); Report_FeedbackMessage(MESSAGE_DISABLED); } else { if(sys.state) { // Requires no alarm mode. return STATUS_IDLE_ERROR; } sys.state = STATE_CHECK_MODE; Report_FeedbackMessage(MESSAGE_ENABLED); } break; case 'X': // Disable alarm lock [ALARM] if(sys.state == STATE_ALARM) { // Block if safety door is ajar. if(System_CheckSafetyDoorAjar()) { return(STATUS_CHECK_DOOR); } Report_FeedbackMessage(MESSAGE_ALARM_UNLOCK); sys.state = STATE_IDLE; // Don't run startup script. Prevents stored moves in startup from causing accidents. } // Otherwise, no effect. break; } break; default: // Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing) if(!(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); } switch(line[1]) { case '#': // Print Grbl NGC parameters if(line[2] != 0) { return STATUS_INVALID_STATEMENT; } else { Report_NgcParams(); } break; case 'H': // Perform homing cycle [IDLE/ALARM] if(BIT_IS_FALSE(settings.flags, BITFLAG_HOMING_ENABLE)) { return(STATUS_SETTING_DISABLED); } if(System_CheckSafetyDoorAjar()) { // Block if safety door is ajar. return STATUS_CHECK_DOOR; } sys.state = STATE_HOMING; // Set system state variable if(line[2] == 0) { MC_HomigCycle(HOMING_CYCLE_ALL); #ifdef HOMING_SINGLE_AXIS_COMMANDS } else if(line[3] == 0) { switch(line[2]) { case 'X': MC_HomigCycle(HOMING_CYCLE_X); break; case 'Y': MC_HomigCycle(HOMING_CYCLE_Y); break; case 'Z': MC_HomigCycle(HOMING_CYCLE_Z); break; default: return STATUS_INVALID_STATEMENT; } #endif } else { return STATUS_INVALID_STATEMENT; } if(!sys.abort) { // Execute startup scripts after successful homing. sys.state = STATE_IDLE; // Set to IDLE when complete. Stepper_Disable(); // Set steppers to the settings idle state before returning. if(line[2] == 0) { System_ExecuteStartup(line); } } break; case 'S': // Puts Grbl to sleep [IDLE/ALARM] if((line[2] != 'L') || (line[3] != 'P') || (line[4] != 0)) { return(STATUS_INVALID_STATEMENT); } System_SetExecStateFlag(EXEC_SLEEP); // Set to execute sleep mode immediately break; case 'I': // Print or store build info. [IDLE/ALARM] if(line[++char_counter] == 0 ) { Settings_ReadBuildInfo(line); Report_BuildInfo(line); #ifdef ENABLE_BUILD_INFO_WRITE_COMMAND } else { // Store startup line [IDLE/ALARM] if(line[char_counter++] != '=') { return STATUS_INVALID_STATEMENT; } helper_var = char_counter; // Set helper variable as counter to start of user info line. do { line[char_counter-helper_var] = line[char_counter]; } while(line[char_counter++] != 0); Settings_StoreBuildInfo(line); #endif } break; case 'R': // Restore defaults [IDLE/ALARM] if((line[2] != 'S') || (line[3] != 'T') || (line[4] != '=') || (line[6] != 0)) { return(STATUS_INVALID_STATEMENT); } switch(line[5]) { #ifdef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS case '$': Settings_Restore(SETTINGS_RESTORE_DEFAULTS); break; #endif #ifdef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS case '#': Settings_Restore(SETTINGS_RESTORE_PARAMETERS); break; #endif #ifdef ENABLE_RESTORE_EEPROM_WIPE_ALL case '*': Settings_Restore(SETTINGS_RESTORE_ALL); break; #endif default: return STATUS_INVALID_STATEMENT; } Report_FeedbackMessage(MESSAGE_RESTORE_DEFAULTS); MC_Reset(); // Force reset to ensure settings are initialized correctly. break; case 'N': // Startup lines. [IDLE/ALARM] #if (N_STARTUP_LINE > 0) if(line[++char_counter] == 0 ) { // Print startup lines for(helper_var = 0; helper_var < N_STARTUP_LINE; helper_var++) { if (!(Settings_ReadStartupLine(helper_var, line))) { Report_StatusMessage(STATUS_SETTING_READ_FAIL); } else { Report_StartupLine(helper_var,line); } } break; } else { // Store startup line [IDLE Only] Prevents motion during ALARM. if(sys.state != STATE_IDLE) { // Store only when idle. return STATUS_IDLE_ERROR; } helper_var = true; // Set helper_var to flag storing method. // No break. Continues into default: to read remaining command characters. } #endif default: // Storing setting methods [IDLE/ALARM] if(!Read_Float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } if(helper_var) { // Store startup line // Prepare sending gcode block to gcode parser by shifting all characters helper_var = char_counter; // Set helper variable as counter to start of gcode block do { line[char_counter-helper_var] = line[char_counter]; } while(line[char_counter++] != 0); // Execute gcode block to ensure block is valid. helper_var = GC_ExecuteLine(line); // Set helper_var to returned status code. if(helper_var) { return(helper_var); } else { helper_var = trunc(parameter); // Set helper_var to int value of parameter Settings_StoreStartupLine(helper_var, line); } } else { // Store global setting. if(!Read_Float(line, &char_counter, &value)) { return STATUS_BAD_NUMBER_FORMAT; } if((line[char_counter] != 0) || (parameter > 255)) { return STATUS_INVALID_STATEMENT; } return Settings_StoreGlobalSetting((uint8_t)parameter, value); } } } return STATUS_OK; // If '$' command makes it to here, then everything's ok. } void System_FlagWcoChange(void) { #ifdef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE Protocol_BufferSynchronize(); #endif sys.report_wco_counter = 0; } // Returns machine position of axis 'idx'. Must be sent a 'step' array. // NOTE: If motor steps and machine position are not in the same coordinate frame, this function // serves as a central place to compute the transformation. float System_ConvertAxisSteps2Mpos(int32_t *steps, uint8_t idx) { float pos; #ifdef COREXY if(idx == X_AXIS) { pos = (float)system_convert_corexy_to_x_axis_steps(steps) / settings.steps_per_mm[idx]; } else if (idx == Y_AXIS) { pos = (float)system_convert_corexy_to_y_axis_steps(steps) / settings.steps_per_mm[idx]; } else { pos = steps[idx]/settings.steps_per_mm[idx]; } #else pos = steps[idx]/settings.steps_per_mm[idx]; #endif return pos; } void System_ConvertArraySteps2Mpos(float *position, int32_t *steps) { uint8_t idx; for(idx = 0; idx < N_AXIS; idx++) { position[idx] = System_ConvertAxisSteps2Mpos(steps, idx); } return; } // CoreXY calculation only. Returns x or y-axis "steps" based on CoreXY motor steps. #ifdef COREXY int32_t system_convert_corexy_to_x_axis_steps(int32_t *steps) { return ((steps[A_MOTOR] + steps[B_MOTOR])/2); } int32_t system_convert_corexy_to_y_axis_steps(int32_t *steps) { return ((steps[A_MOTOR] - steps[B_MOTOR])/2); } #endif // Checks and reports if target array exceeds machine travel limits. uint8_t System_CheckTravelLimits(float *target) { uint8_t idx; for(idx = 0; idx < N_AXIS; idx++) { #ifdef HOMING_FORCE_SET_ORIGIN // When homing forced set origin is enabled, soft limits checks need to account for directionality. // NOTE: max_travel is stored as negative if(BIT_IS_TRUE(settings.homing_dir_mask, BIT(idx))) { if(target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { return true; } } else { if(target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return true; } } #else // NOTE: max_travel is stored as negative if(target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return true; } #endif } return false; } // Special handlers for setting and clearing Grbl's real-time execution flags. void System_SetExecStateFlag(uint8_t mask) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_state |= (mask); __set_PRIMASK(primask); } void System_ClearExecStateFlag(uint8_t mask) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_state &= ~(mask); __set_PRIMASK(primask); } void System_SetExecAlarm(uint8_t code) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_alarm = code; __set_PRIMASK(primask); } void System_ClearExecAlarm(void) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_alarm = 0; __set_PRIMASK(primask); } void System_SetExecMotionOverrideFlag(uint8_t mask) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_motion_override |= (mask); __set_PRIMASK(primask); } void System_SetExecAccessoryOverrideFlag(uint8_t mask) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_accessory_override |= (mask); __set_PRIMASK(primask); } void System_ClearExecMotionOverride(void) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_motion_override = 0; __set_PRIMASK(primask); } void System_ClearExecAccessoryOverrides(void) { uint32_t primask = __get_PRIMASK(); __disable_irq(); sys_rt_exec_accessory_override = 0; __set_PRIMASK(primask); }