GRBL-Advanced/grbl/util.c

198 wiersze
4.6 KiB
C
Czysty Zwykły widok Historia

2017-05-30 22:12:10 +00:00
/*
util.c - Shared functions
Part of Grbl-Advanced
Copyright (c) 2014-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2017 Patrick F.
Grbl-Advanced is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl-Advanced is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl-Advanced. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Config.h"
#include "Protocol.h"
#include "System.h"
#include "util.h"
#include "System32.h"
#define MAX_INT_DIGITS 8 // Maximum number of digits in int32 (and float)
// Extracts a floating point value from a string. The following code is based loosely on
// the avr-libc strtod() function by Michael Stumpf and Dmitry Xmelkov and many freely
// available conversion method examples, but has been highly optimized for Grbl. For known
// CNC applications, the typical decimal value is expected to be in the range of E0 to E-4.
// Scientific notation is officially not supported by g-code, and the 'E' character may
// be a g-code word on some CNC systems. So, 'E' notation will not be recognized.
// NOTE: Thanks to Radu-Eosif Mihailescu for identifying the issues with using strtod().
uint8_t Read_Float(char *line, uint8_t *char_counter, float *float_ptr)
{
char *ptr = line + *char_counter;
unsigned char c;
// Grab first character and increment pointer. No spaces assumed in line.
c = *ptr++;
// Capture initial positive/minus character
bool isnegative = false;
if(c == '-') {
isnegative = true;
c = *ptr++;
}
else if(c == '+') {
c = *ptr++;
}
// Extract number into fast integer. Track decimal in terms of exponent value.
uint32_t intval = 0;
int8_t exp = 0;
uint8_t ndigit = 0;
bool isdecimal = false;
while(1) {
c -= '0';
if(c <= 9) {
ndigit++;
if(ndigit <= MAX_INT_DIGITS) {
if(isdecimal) { exp--; }
intval = (((intval << 2) + intval) << 1) + c; // intval*10 + c
}
else {
if (!(isdecimal)) { exp++; } // Drop overflow digits
}
}
else if(c == (('.'-'0') & 0xff) && !(isdecimal)) {
isdecimal = true;
}
else {
break;
}
c = *ptr++;
}
// Return if no digits have been read.
if(!ndigit) { return(false); };
// Convert integer into floating point.
float fval;
fval = (float)intval;
// Apply decimal. Should perform no more than two floating point multiplications for the
// expected range of E0 to E-4.
if(fval != 0) {
while(exp <= -2) {
fval *= 0.01;
exp += 2;
}
if(exp < 0) {
fval *= 0.1;
}
else if(exp > 0) {
do {
fval *= 10.0;
} while(--exp > 0);
}
}
// Assign floating point value with correct sign.
if(isnegative) {
*float_ptr = -fval;
}
else {
*float_ptr = fval;
}
*char_counter = ptr - line - 1; // Set char_counter to next statement
return(true);
}
// Non-blocking delay function used for general operation and suspend features.
void Delay_sec(float seconds, uint8_t mode)
{
uint16_t i = ceil(1000/DWELL_TIME_STEP*seconds);
while(i-- > 0) {
if(sys.abort) {
return;
}
if(mode == DELAY_MODE_DWELL) {
Protocol_ExecuteRealtime();
}
else { // DELAY_MODE_SYS_SUSPEND
// Execute rt_system() only to avoid nesting suspend loops.
Protocol_ExecRtSystem();
if(sys.suspend & SUSPEND_RESTART_RETRACT) {
// Bail, if safety door reopens.
return;
}
}
Delay_ms(DWELL_TIME_STEP); // Delay DWELL_TIME_STEP increment
}
}
// Simple hypotenuse computation function.
float hypot_f(float x, float y)
{
return sqrt(x*x + y*y);
}
bool isEqual_f(float a, float b)
{
if(fabs(a-b) < 0.00001) {
return true;
}
return false;
}
float convert_delta_vector_to_unit_vector(float *vector)
{
uint8_t idx;
float magnitude = 0.0;
for(idx = 0; idx < N_AXIS; idx++) {
if(vector[idx] != 0.0) {
magnitude += vector[idx]*vector[idx];
}
}
magnitude = sqrt(magnitude);
float inv_magnitude = 1.0/magnitude;
for(idx = 0; idx < N_AXIS; idx++) {
vector[idx] *= inv_magnitude;
}
return magnitude;
}
float limit_value_by_axis_maximum(float *max_value, float *unit_vec)
{
uint8_t idx;
float limit_value = SOME_LARGE_VALUE;
for(idx = 0; idx < N_AXIS; idx++) {
if(unit_vec[idx] != 0) { // Avoid divide by zero.
limit_value = min(limit_value,fabs(max_value[idx]/unit_vec[idx]));
}
}
return limit_value;
}