simplify dma writting

simplify_dma
F5OEO 2019-01-06 10:51:52 +00:00
rodzic d23e1fd8fc
commit 326d51cbbc
12 zmienionych plików z 469 dodań i 740 usunięć

Wyświetl plik

@ -4,7 +4,7 @@ LDFLAGS = -lm -lrt -lpthread
CCP = c++ CCP = c++
CC = cc CC = cc
librpitx: librpitx.h gpio.h gpio.cpp dma.h dma.cpp mailbox.c raspberry_pi_revision.c fmdmasync.h fmdmasync.cpp ngfmdmasync.h ngfmdmasync.cpp dsp.h dsp.cpp iqdmasync.h iqdmasync.cpp serialdmasync.h serialdmasync.cpp phasedmasync.h phasedmasync.cpp fskburst.h fskburst.cpp ookburst.cpp ookburst.h atv.h atv.cpp librpitx: librpitx.h gpio.h gpio.cpp dma.h dma.cpp mailbox.c raspberry_pi_revision.c fmdmasync.h fmdmasync.cpp ngfmdmasync.h ngfmdmasync.cpp dsp.h dsp.cpp iqdmasync.h iqdmasync.cpp serialdmasync.h serialdmasync.cpp phasedmasync.h phasedmasync.cpp fskburst.h fskburst.cpp ookburst.cpp ookburst.h atv.h atv.cpp util.h
$(CC) $(CFLAGS) -c -o mailbox.o mailbox.c $(CC) $(CFLAGS) -c -o mailbox.o mailbox.c
$(CC) $(CFLAGS) -c -o raspberry_pi_revision.o raspberry_pi_revision.c $(CC) $(CFLAGS) -c -o raspberry_pi_revision.o raspberry_pi_revision.c
$(CCP) $(CXXFLAGS) -c dsp.cpp iqdmasync.cpp ngfmdmasync.cpp fmdmasync.cpp dma.cpp gpio.cpp serialdmasync.cpp phasedmasync.cpp amdmasync.h amdmasync.cpp fskburst.cpp ookburst.cpp atv.cpp $(CCP) $(CXXFLAGS) -c dsp.cpp iqdmasync.cpp ngfmdmasync.cpp fmdmasync.cpp dma.cpp gpio.cpp serialdmasync.cpp phasedmasync.cpp amdmasync.h amdmasync.cpp fskburst.cpp ookburst.cpp atv.cpp

Wyświetl plik

@ -72,39 +72,17 @@ void amdmasync::SetDmaAlgo()
//@0 //@0
//Set Amplitude by writing to PADS //Set Amplitude by writing to PADS
cbp->info = 0;//BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp,samplecnt*registerbysample,dma_pad,1);
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample]);
cbp->dst = 0x7E000000+(PADS_GPIO_0<<2)+PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++; cbp++;
//@1 //@1
//Set Amplitude to FSEL for amplitude=0 //Set Amplitude to FSEL for amplitude=0
cbp->info = 0;//BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp,samplecnt*registerbysample+1,dma_fsel,1);
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample+1]);
cbp->dst = 0x7E000000 + (GPFSEL0<<2)+GENERAL_BASE;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++; cbp++;
// Delay // Delay
if(syncwithpwm) SetEasyCB(cbp,samplecnt*registerbysample,syncwithpwm?dma_pwm:dma_pcm,1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if(syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO<<2) + PWM_BASE ;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A<<2) + PCM_BASE ;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next);
cbp++; cbp++;
} }

Wyświetl plik

@ -77,6 +77,10 @@ void atv::SetDmaAlgo()
uint32_t level1 = mem_virt_to_phys(&usermem[(usermemsize - 2)]); uint32_t level1 = mem_virt_to_phys(&usermem[(usermemsize - 2)]);
uint32_t level4 = mem_virt_to_phys(&usermem[(usermemsize - 3)]); uint32_t level4 = mem_virt_to_phys(&usermem[(usermemsize - 3)]);
uint32_t index_level0 = usermemsize - 1;
uint32_t index_level1 = usermemsize - 2;
uint32_t index_level4 = usermemsize - 3;
int shortsync_0 = 2; int shortsync_0 = 2;
int shortsync_1 = 30; int shortsync_1 = 30;
@ -96,272 +100,65 @@ void atv::SetDmaAlgo()
//2us 0,30us 1 //2us 0,30us 1
//@0 //@0
//SYNC preegalisation 2us //SYNC preegalisation 2us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level0, dma_pad, 1);
cbp->src = level0; //Amp 0 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, shortsync_0);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * shortsync_0; //2us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
//SYNC preegalisation 30us //SYNC preegalisation 30us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level1, dma_pad, 1);
cbp->src = level1; //Amp 1 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, shortsync_1);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * shortsync_1; //30us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
} }
//SYNC top trame 5*4*2frameCB //SYNC top trame 5*4*2frameCB
for (int i = 0; i < 5; i++) for (int i = 0; i < 5; i++)
{ {
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level0, dma_pad, 1);
cbp->src = level0; //Amp 0 27us SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, longsync_0);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay SetEasyCB(cbp++, index_level1, dma_pad, 1);
if (syncwithpwm) SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, longsync_1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * longsync_0; //27us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ;
cbp->src = level1; //Amp 1 5us
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * longsync_1; //5us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
} }
//postegalisation ; copy paste from preegalisation //postegalisation ; copy paste from preegalisation
//5*4*2CB //5*4*2CB
for (int i = 0; i < 5 /*-i*/; i++) for (int i = 0; i < 5 + frame; i++)
{ {
//2us 0,30us 1 //2us 0,30us 1
//@0 //@0
//SYNC preegalisation 2us //SYNC preegalisation 2us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level0, dma_pad, 1);
cbp->src = level0; //Amp 0 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, shortsync_0);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * shortsync_0; //2us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
//SYNC preegalisation 30us //SYNC preegalisation 30us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level1, dma_pad, 1);
cbp->src = level1; //Amp 1 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, shortsync_1);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * shortsync_1; //30us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
} }
//(304+305)*(4+52*2+2)CB //(304+305)*(4+52*2+2)CB
for (int line = 0; line < 305/* 317 + frame*/; line++) for (int line = 0; line < 305 /* 317 + frame*/; line++)
{ {
//@0 //@0
//SYNC 0/ 5us //SYNC 0/ 5us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level0, dma_pad, 1);
cbp->src = level0; //Amp 0 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, normalsync_0);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * normalsync_0; //4us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
//@0
//SYNC 1/ 5us //SYNC 1/ 5us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level1, dma_pad, 1);
cbp->src = level1; //Amp 1 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, normalsync_1);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * normalsync_1; //5us;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
for (uint32_t samplecnt = 0; samplecnt < 52; samplecnt++) //52 us for (uint32_t samplecnt = 0; samplecnt < 52; samplecnt++) //52 us
{ {
//sampletab[samplecnt * registerbysample] = (0x5A << 24) + (3 & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD SetEasyCB(cbp++, samplecnt + line * 52 + frame * 312 * 52, dma_pad, 1);
//@0 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, 1);
//DATA IN / 1us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ;
//if(line<20) cbp->src=level1;
//if((line>=20)&&(line<40)) cbp->src=level4;
//if(line>=20)
cbp->src = mem_virt_to_phys(&usermem[samplecnt + line * 52 + frame * 312 * 52]);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4; //1us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
} }
//FRONT PORSH //FRONT PORSH
//SYNC 2us //SYNC 2us
cbp->info = 0; //BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++, index_level1, dma_pad, 1);
cbp->src = level1; //Amp 1 SetEasyCB(cbp++, 0, syncwithpwm ? dma_pwm : dma_pcm, frontsync_1);
cbp->dst = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (syncwithpwm)
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if (syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE;
cbp->length = 4 * frontsync_1; //2us
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
} }
} }
cbp--; cbp--;
cbp->next = mem_virt_to_phys(cbarray); // We loop to the first CB cbp->next = mem_virt_to_phys(cbarray); // We loop to the first CB
fprintf(stderr,"Last cbp : %d \n",((unsigned int)(cbp)-(unsigned int)(cbarray))/sizeof(dma_cb_t)); fprintf(stderr, "Last cbp : %d \n", ((unsigned int)(cbp) - (unsigned int)(cbarray)) / sizeof(dma_cb_t));
} }
void atv::SetFrame(unsigned char *Luminance, size_t Lines) void atv::SetFrame(unsigned char *Luminance, size_t Lines)
@ -370,23 +167,12 @@ void atv::SetFrame(unsigned char *Luminance, size_t Lines)
{ {
for (size_t x = 0; x < 52; x++) for (size_t x = 0; x < 52; x++)
{ {
int AmplitudePAD = (Luminance[i * 52 + x]/255.0) * 6.0 + 1; //1 to 7 int AmplitudePAD = (Luminance[i * 52 + x] / 255.0) * 6.0 + 1; //1 to 7
// usermem[i* 52 + x] = (0x5A << 24) + (AmplitudePAD & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD
if (i % 2 == 0) // First field
usermem[i* 52 /2 + x] = (0x5A << 24) + (AmplitudePAD & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD
else
usermem[(i-1)* 52/2 + x+52*312] = (0x5A << 24) + (AmplitudePAD & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD
}
/*for (size_t x = 0; x < 52; x++)
{
int AmplitudePAD = (Luminance[i * 52 + x]/255.0) * 6 + 1; //1 to 7
if (i % 2 == 0) // First field if (i % 2 == 0) // First field
usermem[i * 52 / 2 + x] = (0x5A << 24) + (AmplitudePAD & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD usermem[i * 52 / 2 + x] = (0x5A << 24) + (AmplitudePAD & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD
else //second field else
usermem[i * 52 / 2 + Lines / 2 + x] = (0x5A << 24) + (AmplitudePAD & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD usermem[(i - 1) * 52 / 2 + x + 52 * 312] = (0x5A << 24) + (AmplitudePAD & 0x7) + (1 << 4) + (0 << 3); // Amplitude PAD
} }
*/
} }
} }

Wyświetl plik

@ -18,6 +18,7 @@ This program is free software: you can redistribute it and/or modify
#include "dma.h" #include "dma.h"
#include "stdio.h" #include "stdio.h"
#include "util.h"
extern "C" extern "C"
{ {
@ -166,6 +167,33 @@ bool dma::isunderflow()
return ((dma_reg.gpioreg[DMA_CS+channel*0x40]&DMA_CS_INT)>0); return ((dma_reg.gpioreg[DMA_CS+channel*0x40]&DMA_CS_INT)>0);
} }
bool dma::SetCB(dma_cb_t *cbp,uint32_t dma_flag,uint32_t src,uint32_t dst,uint32_t repeat)
{
cbp->info = dma_flag;
cbp->src = src;
cbp->dst = dst;
cbp->length = 4*repeat;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
return true;
}
bool dma::SetEasyCB(dma_cb_t *cbp,uint32_t index,dma_common_reg dst,uint32_t repeat)
{
uint32_t flag=BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP;
uint32_t src=mem_virt_to_phys(&usermem[index]);
switch(dst)
{
case dma_pllc_frac :break;
case dma_fsel:break;
case dma_pad:break;
case dma_pwm : flag|=BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);break;
case dma_pcm : flag|=BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);break;
}
SetCB(cbp,flag,src,dst,repeat);
return true;
}
//**************************************** BUFFER DMA ******************************************************** //**************************************** BUFFER DMA ********************************************************
bufferdma::bufferdma(int Channel,uint32_t tbuffersize,uint32_t tcbbysample,uint32_t tregisterbysample):dma(Channel,tbuffersize*tcbbysample,tbuffersize*tregisterbysample) bufferdma::bufferdma(int Channel,uint32_t tbuffersize,uint32_t tcbbysample,uint32_t tregisterbysample):dma(Channel,tbuffersize*tcbbysample,tbuffersize*tregisterbysample)
{ {

129
src/dma.h
Wyświetl plik

@ -1,35 +1,35 @@
#ifndef DEF_DMA #ifndef DEF_DMA
#define DEF_DMA #define DEF_DMA
#include "stdint.h" #include "stdint.h"
#include "gpio.h" #include "gpio.h"
#include "util.h"
// ---- Memory allocating defines // ---- Memory allocating defines
// https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface // https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
#define MEM_FLAG_DISCARDABLE (1 << 0) /* can be resized to 0 at any time. Use for cached data */ #define MEM_FLAG_DISCARDABLE (1 << 0) /* can be resized to 0 at any time. Use for cached data */
#define MEM_FLAG_NORMAL (0 << 2) /* normal allocating alias. Don't use from ARM */ #define MEM_FLAG_NORMAL (0 << 2) /* normal allocating alias. Don't use from ARM */
#define MEM_FLAG_DIRECT (1 << 2) /* 0xC alias uncached */ #define MEM_FLAG_DIRECT (1 << 2) /* 0xC alias uncached */
#define MEM_FLAG_COHERENT (2 << 2) /* 0x8 alias. Non-allocating in L2 but coherent */ #define MEM_FLAG_COHERENT (2 << 2) /* 0x8 alias. Non-allocating in L2 but coherent */
#define MEM_FLAG_L1_NONALLOCATING (MEM_FLAG_DIRECT | MEM_FLAG_COHERENT) /* Allocating in L2 */ #define MEM_FLAG_L1_NONALLOCATING (MEM_FLAG_DIRECT | MEM_FLAG_COHERENT) /* Allocating in L2 */
#define MEM_FLAG_ZERO ( 1 << 4) /* initialise buffer to all zeros */ #define MEM_FLAG_ZERO (1 << 4) /* initialise buffer to all zeros */
#define MEM_FLAG_NO_INIT ( 1 << 5) /* don't initialise (default is initialise to all ones */ #define MEM_FLAG_NO_INIT (1 << 5) /* don't initialise (default is initialise to all ones */
#define MEM_FLAG_HINT_PERMALOCK (1 << 6) /* Likely to be locked for long periods of time. */ #define MEM_FLAG_HINT_PERMALOCK (1 << 6) /* Likely to be locked for long periods of time. */
#define BCM2708_DMA_SRC_IGNOR (1<<11) #define BCM2708_DMA_SRC_IGNOR (1 << 11)
#define BCM2708_DMA_SRC_INC (1<<8) #define BCM2708_DMA_SRC_INC (1 << 8)
#define BCM2708_DMA_DST_IGNOR (1<<7) #define BCM2708_DMA_DST_IGNOR (1 << 7)
#define BCM2708_DMA_NO_WIDE_BURSTS (1<<26) #define BCM2708_DMA_NO_WIDE_BURSTS (1 << 26)
#define BCM2708_DMA_WAIT_RESP (1<<3) #define BCM2708_DMA_WAIT_RESP (1 << 3)
#define BCM2708_DMA_D_DREQ (1 << 6)
#define BCM2708_DMA_PER_MAP(x) ((x) << 16)
#define BCM2708_DMA_END (1 << 1)
#define BCM2708_DMA_RESET (1 << 31)
#define BCM2708_DMA_INT (1 << 2)
#define BCM2708_DMA_D_DREQ (1<<6) #define DMA_CS (0x00 / 4)
#define BCM2708_DMA_PER_MAP(x) ((x)<<16) #define DMA_CONBLK_AD (0x04 / 4)
#define BCM2708_DMA_END (1<<1) #define DMA_DEBUG (0x20 / 4)
#define BCM2708_DMA_RESET (1<<31)
#define BCM2708_DMA_INT (1<<2)
#define DMA_CS (0x00/4)
#define DMA_CONBLK_AD (0x04/4)
#define DMA_DEBUG (0x20/4)
//Page 61 //Page 61
#define DREQ_PCM_TX 2 #define DREQ_PCM_TX 2
@ -41,81 +41,78 @@
#define DREQ_SPI_SLAVE_TX 8 #define DREQ_SPI_SLAVE_TX 8
#define DREQ_SPI_SLAVE_RX 9 #define DREQ_SPI_SLAVE_RX 9
class dma class dma
{ {
protected: protected:
struct { struct
int handle; /* From mbox_open() */ {
unsigned mem_ref; /* From mem_alloc() */ int handle; /* From mbox_open() */
unsigned bus_addr; /* From mem_lock() */ unsigned mem_ref; /* From mem_alloc() */
uint8_t *virt_addr; /* From mapmem() */ unsigned bus_addr; /* From mem_lock() */
} mbox; uint8_t *virt_addr; /* From mapmem() */
} mbox;
typedef struct { typedef struct
uint32_t info, src, dst, length, {
stride, next, pad[2]; uint32_t info, src, dst, length,
} dma_cb_t; //8*4=32 bytes stride, next, pad[2];
} dma_cb_t; //8*4=32 bytes
typedef struct { typedef struct
uint8_t *virtaddr; {
uint32_t physaddr; uint8_t *virtaddr;
} page_map_t; uint32_t physaddr;
} page_map_t;
page_map_t *page_map; page_map_t *page_map;
uint8_t *virtbase; uint8_t *virtbase;
int NumPages=0; int NumPages = 0;
int channel; //DMA Channel int channel; //DMA Channel
dmagpio dma_reg; dmagpio dma_reg;
uint32_t mem_flag; //Cache or not depending on Rpi1 or 2/3 uint32_t mem_flag; //Cache or not depending on Rpi1 or 2/3
uint32_t dram_phys_base; uint32_t dram_phys_base;
public:
public: dma_cb_t *cbarray;
dma_cb_t *cbarray;
uint32_t cbsize; uint32_t cbsize;
uint32_t *usermem; uint32_t *usermem;
uint32_t usermemsize; uint32_t usermemsize;
bool Started=false; bool Started = false;
dma(int Channel,uint32_t CBSize,uint32_t UserMemSize); dma(int Channel, uint32_t CBSize, uint32_t UserMemSize);
~dma(); ~dma();
uint32_t mem_virt_to_phys(volatile void *virt); uint32_t mem_virt_to_phys(volatile void *virt);
uint32_t mem_phys_to_virt(volatile uint32_t phys); uint32_t mem_phys_to_virt(volatile uint32_t phys);
void GetRpiInfo(); void GetRpiInfo();
int start(); int start();
int stop(); int stop();
int getcbposition(); int getcbposition();
bool isrunning(); bool isrunning();
bool isunderflow(); bool isunderflow();
bool SetCB(dma_cb_t *cbp, uint32_t dma_flag, uint32_t src, uint32_t dst, uint32_t repeat);
bool SetEasyCB(dma_cb_t *cbp, uint32_t index, dma_common_reg dst, uint32_t repeat);
}; };
#define PHYSICAL_BUS 0x7E000000 class bufferdma : public dma
class bufferdma:public dma
{ {
protected: protected:
uint32_t current_sample; uint32_t current_sample;
uint32_t last_sample; uint32_t last_sample;
uint32_t sample_available; uint32_t sample_available;
public: public:
uint32_t buffersize; uint32_t buffersize;
uint32_t cbbysample; uint32_t cbbysample;
uint32_t registerbysample; uint32_t registerbysample;
uint32_t *sampletab; uint32_t *sampletab;
public: public:
bufferdma(int Channel,uint32_t tbuffersize,uint32_t tcbbysample,uint32_t tregisterbysample); bufferdma(int Channel, uint32_t tbuffersize, uint32_t tcbbysample, uint32_t tregisterbysample);
void SetDmaAlgo(); void SetDmaAlgo();
int GetBufferAvailable(); int GetBufferAvailable();
int GetUserMemIndex(); int GetUserMemIndex();
int PushSample(int Index); int PushSample(int Index);
}; };
#endif #endif

Wyświetl plik

@ -3,182 +3,188 @@
#include "stdint.h" #include "stdint.h"
#include <cstdio> #include <cstdio>
#define PHYSICAL_BUS 0x7E000000
class gpio class gpio
{ {
public: public:
volatile uint32_t *gpioreg=NULL; volatile uint32_t *gpioreg = NULL;
uint32_t gpiolen; uint32_t gpiolen;
gpio(uint32_t base, uint32_t len); gpio(uint32_t base, uint32_t len);
~gpio(); ~gpio();
uint32_t GetPeripheralBase(); uint32_t GetPeripheralBase();
}; };
#define DMA_BASE (0x00007000)
#define DMA_LEN 0xF00
#define DMA_BASE (0x00007000 ) #define BCM2708_DMA_SRC_IGNOR (1 << 11)
#define DMA_LEN 0xF00 #define BCM2708_DMA_SRC_INC (1 << 8)
#define BCM2708_DMA_DST_IGNOR (1 << 7)
#define BCM2708_DMA_NO_WIDE_BURSTS (1 << 26)
#define BCM2708_DMA_WAIT_RESP (1 << 3)
#define BCM2708_DMA_SET_INT (1 << 0)
#define BCM2708_DMA_SRC_IGNOR (1<<11) #define BCM2708_DMA_D_DREQ (1 << 6)
#define BCM2708_DMA_SRC_INC (1<<8) #define BCM2708_DMA_PER_MAP(x) ((x) << 16)
#define BCM2708_DMA_DST_IGNOR (1<<7) #define BCM2708_DMA_END (1 << 1)
#define BCM2708_DMA_NO_WIDE_BURSTS (1<<26) #define BCM2708_DMA_RESET (1 << 31)
#define BCM2708_DMA_WAIT_RESP (1<<3) #define BCM2708_DMA_ABORT (1 << 30)
#define BCM2708_DMA_SET_INT (1<<0) #define BCM2708_DMA_INT (1 << 2)
#define BCM2708_DMA_D_DREQ (1<<6) #define DMA_CS (0x00 / 4)
#define BCM2708_DMA_PER_MAP(x) ((x)<<16) #define DMA_CONBLK_AD (0x04 / 4)
#define BCM2708_DMA_END (1<<1) #define DMA_DEBUG (0x20 / 4)
#define BCM2708_DMA_RESET (1<<31)
#define BCM2708_DMA_ABORT (1<<30)
#define BCM2708_DMA_INT (1<<2)
#define DMA_CS (0x00/4) #define DMA_CS_RESET (1 << 31)
#define DMA_CONBLK_AD (0x04/4) #define DMA_CS_ABORT (1 << 30)
#define DMA_DEBUG (0x20/4) #define DMA_CS_DISDEBUG (1 << 29)
#define DMA_CS_WAIT_FOR_OUTSTANDING_WRITES (1 << 28)
#define DMA_CS_RESET (1<<31) #define DMA_CS_INT (1 << 2)
#define DMA_CS_ABORT (1<<30) #define DMA_CS_END (1 << 1)
#define DMA_CS_DISDEBUG (1<<29) #define DMA_CS_ACTIVE (1 << 0)
#define DMA_CS_WAIT_FOR_OUTSTANDING_WRITES (1<<28)
#define DMA_CS_INT (1<<2)
#define DMA_CS_END (1<<1)
#define DMA_CS_ACTIVE (1<<0)
#define DMA_CS_PRIORITY(x) ((x)&0xf << 16) #define DMA_CS_PRIORITY(x) ((x)&0xf << 16)
#define DMA_CS_PANIC_PRIORITY(x) ((x)&0xf << 20) #define DMA_CS_PANIC_PRIORITY(x) ((x)&0xf << 20)
class dmagpio:public gpio class dmagpio : public gpio
{ {
public: public:
dmagpio(); dmagpio();
}; };
//************************************ GENERAL GPIO *************************************** //************************************ GENERAL GPIO ***************************************
#define GENERAL_BASE (0x00200000) #define GENERAL_BASE (0x00200000)
#define GENERAL_LEN 0xB4 #define GENERAL_LEN 0xB4
#define GPFSEL0 (0x00/4) #define GPFSEL0 (0x00 / 4)
#define GPFSEL1 (0x04/4) #define GPFSEL1 (0x04 / 4)
#define GPFSEL2 (0x08/4) #define GPFSEL2 (0x08 / 4)
#define GPPUD (0x94/4) #define GPPUD (0x94 / 4)
#define GPPUDCLK0 (0x98/4) #define GPPUDCLK0 (0x98 / 4)
#define GPPUDCLK1 (0x9C/4) #define GPPUDCLK1 (0x9C / 4)
enum {fsel_input,fsel_output,fsel_alt5,fsel_alt4,fsel_alt0,fsel_alt1,fsel_alt2,fsel_alt3}; enum
class generalgpio:public gpio
{ {
fsel_input,
public: fsel_output,
generalgpio(); fsel_alt5,
fsel_alt4,
fsel_alt0,
fsel_alt1,
fsel_alt2,
fsel_alt3
};
class generalgpio : public gpio
{
public:
generalgpio();
int setmode(uint32_t gpio, uint32_t mode); int setmode(uint32_t gpio, uint32_t mode);
~generalgpio(); ~generalgpio();
int setpulloff(uint32_t gpio); int setpulloff(uint32_t gpio);
}; };
// Add for PLL frequency CTRL wihout divider // Add for PLL frequency CTRL wihout divider
// https://github.com/raspberrypi/linux/blob/rpi-4.9.y/drivers/clk/bcm/clk-bcm2835.c // https://github.com/raspberrypi/linux/blob/rpi-4.9.y/drivers/clk/bcm/clk-bcm2835.c
// See interesting patch for jitter https://github.com/raspberrypi/linux/commit/76527b4e6a5dbe55e0b2d8ab533c2388b36c86be // See interesting patch for jitter https://github.com/raspberrypi/linux/commit/76527b4e6a5dbe55e0b2d8ab533c2388b36c86be
#define GENMASK(h, l) (((U32_C(1) << ((h) - (l) + 1)) - 1) << (l)) #define GENMASK(h, l) (((U32_C(1) << ((h) - (l) + 1)) - 1) << (l))
#define CLK_BASE (0x00101000) #define CLK_BASE (0x00101000)
#define CLK_LEN 0x1660 #define CLK_LEN 0x1660
#define CORECLK_CNTL (0x08/4) #define CORECLK_CNTL (0x08 / 4)
#define CORECLK_DIV (0x0c/4) #define CORECLK_DIV (0x0c / 4)
#define GPCLK_CNTL (0x70/4) #define GPCLK_CNTL (0x70 / 4)
#define GPCLK_DIV (0x74/4) #define GPCLK_DIV (0x74 / 4)
#define GPCLK_CNTL_2 (0x80/4) #define GPCLK_CNTL_2 (0x80 / 4)
#define GPCLK_DIV_2 (0x84/4) #define GPCLK_DIV_2 (0x84 / 4)
#define EMMCCLK_CNTL (0x1C0/4) #define EMMCCLK_CNTL (0x1C0 / 4)
#define EMMCCLK_DIV (0x1C4/4) #define EMMCCLK_DIV (0x1C4 / 4)
#define CM_VPUCTL 0x008 #define CM_VPUCTL 0x008
#define CM_VPUDIV 0x00c #define CM_VPUDIV 0x00c
#define CM_SYSCTL 0x010 #define CM_SYSCTL 0x010
#define CM_SYSDIV 0x014 #define CM_SYSDIV 0x014
#define CM_PERIACTL 0x018 #define CM_PERIACTL 0x018
#define CM_PERIADIV 0x01c #define CM_PERIADIV 0x01c
#define CM_PERIICTL 0x020 #define CM_PERIICTL 0x020
#define CM_PERIIDIV 0x024 #define CM_PERIIDIV 0x024
#define CM_H264CTL 0x028 #define CM_H264CTL 0x028
#define CM_H264DIV 0x02c #define CM_H264DIV 0x02c
#define CM_ISPCTL 0x030 #define CM_ISPCTL 0x030
#define CM_ISPDIV 0x034 #define CM_ISPDIV 0x034
#define CM_V3DCTL 0x038 #define CM_V3DCTL 0x038
#define CM_V3DDIV 0x03c #define CM_V3DDIV 0x03c
#define CM_CAM0CTL 0x040 #define CM_CAM0CTL 0x040
#define CM_CAM0DIV 0x044 #define CM_CAM0DIV 0x044
#define CM_CAM1CTL 0x048 #define CM_CAM1CTL 0x048
#define CM_CAM1DIV 0x04c #define CM_CAM1DIV 0x04c
#define CM_CCP2CTL 0x050 #define CM_CCP2CTL 0x050
#define CM_CCP2DIV 0x054 #define CM_CCP2DIV 0x054
#define CM_DSI0ECTL 0x058 #define CM_DSI0ECTL 0x058
#define CM_DSI0EDIV 0x05c #define CM_DSI0EDIV 0x05c
#define CM_DSI0PCTL 0x060 #define CM_DSI0PCTL 0x060
#define CM_DSI0PDIV 0x064 #define CM_DSI0PDIV 0x064
#define CM_DPICTL 0x068 #define CM_DPICTL 0x068
#define CM_DPIDIV 0x06c #define CM_DPIDIV 0x06c
#define CM_GP0CTL 0x070 #define CM_GP0CTL 0x070
#define CM_GP0DIV 0x074 #define CM_GP0DIV 0x074
#define CM_GP1CTL 0x078 #define CM_GP1CTL 0x078
#define CM_GP1DIV 0x07c #define CM_GP1DIV 0x07c
#define CM_GP2CTL 0x080 #define CM_GP2CTL 0x080
#define CM_GP2DIV 0x084 #define CM_GP2DIV 0x084
#define CM_HSMCTL 0x088 #define CM_HSMCTL 0x088
#define CM_HSMDIV 0x08c #define CM_HSMDIV 0x08c
#define CM_OTPCTL 0x090 #define CM_OTPCTL 0x090
#define CM_OTPDIV 0x094 #define CM_OTPDIV 0x094
#define CM_PCMCTL 0x098 #define CM_PCMCTL 0x098
#define CM_PCMDIV 0x09c #define CM_PCMDIV 0x09c
#define CM_PWMCTL 0x0a0 #define CM_PWMCTL 0x0a0
#define CM_PWMDIV 0x0a4 #define CM_PWMDIV 0x0a4
#define CM_SLIMCTL 0x0a8 #define CM_SLIMCTL 0x0a8
#define CM_SLIMDIV 0x0ac #define CM_SLIMDIV 0x0ac
#define CM_SMICTL 0x0b0 #define CM_SMICTL 0x0b0
#define CM_SMIDIV 0x0b4 #define CM_SMIDIV 0x0b4
/* no definition for 0x0b8 and 0x0bc */ /* no definition for 0x0b8 and 0x0bc */
#define CM_TCNTCTL 0x0c0 #define CM_TCNTCTL 0x0c0
# define CM_TCNT_SRC1_SHIFT 12 #define CM_TCNT_SRC1_SHIFT 12
#define CM_TCNTCNT 0x0c4 #define CM_TCNTCNT 0x0c4
#define CM_TECCTL 0x0c8 #define CM_TECCTL 0x0c8
#define CM_TECDIV 0x0cc #define CM_TECDIV 0x0cc
#define CM_TD0CTL 0x0d0 #define CM_TD0CTL 0x0d0
#define CM_TD0DIV 0x0d4 #define CM_TD0DIV 0x0d4
#define CM_TD1CTL 0x0d8 #define CM_TD1CTL 0x0d8
#define CM_TD1DIV 0x0dc #define CM_TD1DIV 0x0dc
#define CM_TSENSCTL 0x0e0 #define CM_TSENSCTL 0x0e0
#define CM_TSENSDIV 0x0e4 #define CM_TSENSDIV 0x0e4
#define CM_TIMERCTL 0x0e8 #define CM_TIMERCTL 0x0e8
#define CM_TIMERDIV 0x0ec #define CM_TIMERDIV 0x0ec
#define CM_UARTCTL 0x0f0 #define CM_UARTCTL 0x0f0
#define CM_UARTDIV 0x0f4 #define CM_UARTDIV 0x0f4
#define CM_VECCTL 0x0f8 #define CM_VECCTL 0x0f8
#define CM_VECDIV 0x0fc #define CM_VECDIV 0x0fc
#define CM_PULSECTL 0x190 #define CM_PULSECTL 0x190
#define CM_PULSEDIV 0x194 #define CM_PULSEDIV 0x194
#define CM_SDCCTL 0x1a8 #define CM_SDCCTL 0x1a8
#define CM_SDCDIV 0x1ac #define CM_SDCDIV 0x1ac
#define CM_ARMCTL 0x1b0 #define CM_ARMCTL 0x1b0
#define CM_AVEOCTL 0x1b8 #define CM_AVEOCTL 0x1b8
#define CM_AVEODIV 0x1bc #define CM_AVEODIV 0x1bc
#define CM_EMMCCTL 0x1c0 #define CM_EMMCCTL 0x1c0
#define CM_EMMCDIV 0x1c4 #define CM_EMMCDIV 0x1c4
#define CM_LOCK (0x114 / 4)
#define CM_LOCK_FLOCKH (1 << 12)
#define CM_LOCK_FLOCKD (1 << 11)
#define CM_LOCK_FLOCKC (1 << 10)
#define CM_LOCK_FLOCKB (1 << 9)
#define CM_LOCK_FLOCKA (1 << 8)
#define CM_LOCK (0x114/4) #define CM_PLLA (0x104 / 4)
# define CM_LOCK_FLOCKH (1<<12)
# define CM_LOCK_FLOCKD (1<<11)
# define CM_LOCK_FLOCKC (1<<10)
# define CM_LOCK_FLOCKB (1<<9)
# define CM_LOCK_FLOCKA (1<<8)
#define CM_PLLA (0x104/4)
/* /*
# define CM_PLL_ANARST BIT(8) # define CM_PLL_ANARST BIT(8)
# define CM_PLLA_HOLDPER BIT(7) # define CM_PLLA_HOLDPER BIT(7)
@ -190,210 +196,228 @@ class generalgpio:public gpio
# define CM_PLLA_HOLDDSI0 BIT(1) # define CM_PLLA_HOLDDSI0 BIT(1)
# define CM_PLLA_LOADDSI0 BIT(0) # define CM_PLLA_LOADDSI0 BIT(0)
*/ */
#define CM_PLLC (0x108/4) #define CM_PLLC (0x108 / 4)
#define CM_PLLD (0x10c/4) #define CM_PLLD (0x10c / 4)
#define CM_PLLH (0x110/4) #define CM_PLLH (0x110 / 4)
#define CM_PLLB (0x170/4) #define CM_PLLB (0x170 / 4)
#define A2W_PLLA_ANA0 (0x1010 / 4)
#define A2W_PLLC_ANA0 (0x1030 / 4)
#define A2W_PLLD_ANA0 (0x1050 / 4)
#define A2W_PLLH_ANA0 (0x1070 / 4)
#define A2W_PLLB_ANA0 (0x10f0 / 4)
#define A2W_PLL_KA_SHIFT 7
#define A2W_PLL_KI_SHIFT 19
#define A2W_PLL_KP_SHIFT 15
#define PLLA_CTRL (0x1100 / 4)
#define PLLA_FRAC (0x1200 / 4)
#define PLLA_DSI0 (0x1300 / 4)
#define PLLA_CORE (0x1400 / 4)
#define PLLA_PER (0x1500 / 4)
#define PLLA_CCP2 (0x1600 / 4)
#define A2W_PLLA_ANA0 (0x1010/4) #define PLLB_CTRL (0x11e0 / 4)
#define A2W_PLLC_ANA0 (0x1030/4) #define PLLB_FRAC (0x12e0 / 4)
#define A2W_PLLD_ANA0 (0x1050/4) #define PLLB_ARM (0x13e0 / 4)
#define A2W_PLLH_ANA0 (0x1070/4) #define PLLB_SP0 (0x14e0 / 4)
#define A2W_PLLB_ANA0 (0x10f0/4) #define PLLB_SP1 (0x15e0 / 4)
#define A2W_PLL_KA_SHIFT 7 #define PLLB_SP2 (0x16e0 / 4)
#define A2W_PLL_KI_SHIFT 19
#define A2W_PLL_KP_SHIFT 15
#define PLLA_CTRL (0x1100/4) #define PLLC_CTRL (0x1120 / 4)
#define PLLA_FRAC (0x1200/4) #define PLLC_FRAC (0x1220 / 4)
#define PLLA_DSI0 (0x1300/4) #define PLLC_CORE2 (0x1320 / 4)
#define PLLA_CORE (0x1400/4) #define PLLC_CORE1 (0x1420 / 4)
#define PLLA_PER (0x1500/4) #define PLLC_PER (0x1520 / 4)
#define PLLA_CCP2 (0x1600/4) #define PLLC_CORE0 (0x1620 / 4)
#define PLLB_CTRL (0x11e0/4) #define PLLD_CTRL (0x1140 / 4)
#define PLLB_FRAC (0x12e0/4) #define PLLD_FRAC (0x1240 / 4)
#define PLLB_ARM (0x13e0/4) #define PLLD_DSI0 (0x1340 / 4)
#define PLLB_SP0 (0x14e0/4) #define PLLD_CORE (0x1440 / 4)
#define PLLB_SP1 (0x15e0/4) #define PLLD_PER (0x1540 / 4)
#define PLLB_SP2 (0x16e0/4) #define PLLD_DSI1 (0x1640 / 4)
#define PLLC_CTRL (0x1120/4) #define PLLH_CTRL (0x1160 / 4)
#define PLLC_FRAC (0x1220/4) #define PLLH_FRAC (0x1260 / 4)
#define PLLC_CORE2 (0x1320/4) #define PLLH_AUX (0x1360 / 4)
#define PLLC_CORE1 (0x1420/4) #define PLLH_RCAL (0x1460 / 4)
#define PLLC_PER (0x1520/4) #define PLLH_PIX (0x1560 / 4)
#define PLLC_CORE0 (0x1620/4) #define PLLH_STS (0x1660 / 4)
#define PLLD_CTRL (0x1140/4) #define XOSC_CTRL (0x1190 / 4)
#define PLLD_FRAC (0x1240/4)
#define PLLD_DSI0 (0x1340/4)
#define PLLD_CORE (0x1440/4)
#define PLLD_PER (0x1540/4)
#define PLLD_DSI1 (0x1640/4)
#define PLLH_CTRL (0x1160/4)
#define PLLH_FRAC (0x1260/4)
#define PLLH_AUX (0x1360/4)
#define PLLH_RCAL (0x1460/4)
#define PLLH_PIX (0x1560/4)
#define PLLH_STS (0x1660/4)
#define XOSC_CTRL (0x1190/4)
#define XOSC_FREQUENCY 19200000 #define XOSC_FREQUENCY 19200000
//Parent PLL //Parent PLL
enum {clk_gnd,clk_osc,clk_debug0,clk_debug1,clk_plla,clk_pllc,clk_plld,clk_hdmi}; enum
class clkgpio:public gpio
{ {
protected: clk_gnd,
int pllnumber; clk_osc,
clk_debug0,
clk_debug1,
clk_plla,
clk_pllc,
clk_plld,
clk_hdmi
};
class clkgpio : public gpio
{
protected:
int pllnumber;
int Mash; int Mash;
uint64_t Pllfrequency; uint64_t Pllfrequency;
bool ModulateFromMasterPLL=false; bool ModulateFromMasterPLL = false;
uint64_t CentralFrequency=0; uint64_t CentralFrequency = 0;
generalgpio gengpio; generalgpio gengpio;
double clk_ppm=0; double clk_ppm = 0;
public:
int PllFixDivider=8; //Fix divider from the master clock in advanced mode
clkgpio(); public:
int PllFixDivider = 8; //Fix divider from the master clock in advanced mode
clkgpio();
~clkgpio(); ~clkgpio();
int SetPllNumber(int PllNo,int MashType); int SetPllNumber(int PllNo, int MashType);
uint64_t GetPllFrequency(int PllNo); uint64_t GetPllFrequency(int PllNo);
void print_clock_tree(void); void print_clock_tree(void);
int SetFrequency(double Frequency); int SetFrequency(double Frequency);
int SetClkDivFrac(uint32_t Div,uint32_t Frac); int SetClkDivFrac(uint32_t Div, uint32_t Frac);
void SetPhase(bool inversed); void SetPhase(bool inversed);
void SetAdvancedPllMode(bool Advanced); void SetAdvancedPllMode(bool Advanced);
int SetCenterFrequency(uint64_t Frequency,int Bandwidth); int SetCenterFrequency(uint64_t Frequency, int Bandwidth);
double GetFrequencyResolution(); double GetFrequencyResolution();
double GetRealFrequency(double Frequency); double GetRealFrequency(double Frequency);
int ComputeBestLO(uint64_t Frequency,int Bandwidth); int ComputeBestLO(uint64_t Frequency, int Bandwidth);
int SetMasterMultFrac(uint32_t Mult,uint32_t Frac); int SetMasterMultFrac(uint32_t Mult, uint32_t Frac);
uint32_t GetMasterFrac(double Frequency); uint32_t GetMasterFrac(double Frequency);
void enableclk(int gpio); void enableclk(int gpio);
void disableclk(int gpio); void disableclk(int gpio);
void Setppm(double ppm); void Setppm(double ppm);
void SetppmFromNTP(); void SetppmFromNTP();
void SetPLLMasterLoop(int Ki,int Kp,int Ka); void SetPLLMasterLoop(int Ki, int Kp, int Ka);
}; };
//************************************ PWM GPIO *************************************** //************************************ PWM GPIO ***************************************
#define PWM_BASE (0x0020C000) #define PWM_BASE (0x0020C000)
#define PWM_LEN 0x28 #define PWM_LEN 0x28
#define PWM_CTL (0x00/4) #define PWM_CTL (0x00 / 4)
#define PWM_DMAC (0x08/4) #define PWM_DMAC (0x08 / 4)
#define PWM_RNG1 (0x10/4) #define PWM_RNG1 (0x10 / 4)
#define PWM_RNG2 (0x20/4) #define PWM_RNG2 (0x20 / 4)
#define PWM_FIFO (0x18/4) #define PWM_FIFO (0x18 / 4)
#define PWMCLK_CNTL (40) // Clk register #define PWMCLK_CNTL (40) // Clk register
#define PWMCLK_DIV (41) // Clk register #define PWMCLK_DIV (41) // Clk register
#define PWMCTL_MSEN2 (1 << 15)
#define PWMCTL_USEF2 (1 << 13)
#define PWMCTL_RPTL2 (1 << 10)
#define PWMCTL_MODE2 (1 << 9)
#define PWMCTL_PWEN2 (1 << 8)
#define PWMCTL_MSEN2 (1<<15) #define PWMCTL_MSEN1 (1 << 7)
#define PWMCTL_USEF2 (1<<13) #define PWMCTL_CLRF (1 << 6)
#define PWMCTL_RPTL2 (1<<10) #define PWMCTL_USEF1 (1 << 5)
#define PWMCTL_MODE2 (1<<9) #define PWMCTL_POLA1 (1 << 4)
#define PWMCTL_PWEN2 (1<<8) #define PWMCTL_RPTL1 (1 << 2)
#define PWMCTL_MODE1 (1 << 1)
#define PWMCTL_MSEN1 (1<<7) #define PWMCTL_PWEN1 (1 << 0)
#define PWMCTL_CLRF (1<<6) #define PWMDMAC_ENAB (1 << 31)
#define PWMCTL_USEF1 (1<<5) #define PWMDMAC_THRSHLD ((15 << 8) | (15 << 0))
#define PWMCTL_POLA1 (1<<4) enum pwmmode
#define PWMCTL_RPTL1 (1<<2)
#define PWMCTL_MODE1 (1<<1)
#define PWMCTL_PWEN1 (1<<0)
#define PWMDMAC_ENAB (1<<31)
#define PWMDMAC_THRSHLD ((15<<8)|(15<<0))
enum pwmmode{pwm1pin,pwm2pin,pwm1pinrepeat};
class pwmgpio:public gpio
{ {
protected: pwm1pin,
pwm2pin,
pwm1pinrepeat
};
class pwmgpio : public gpio
{
protected:
clkgpio clk; clkgpio clk;
int pllnumber; int pllnumber;
int Mash; int Mash;
int Prediv; //Range of PWM int Prediv; //Range of PWM
uint64_t Pllfrequency; uint64_t Pllfrequency;
bool ModulateFromMasterPLL=false; bool ModulateFromMasterPLL = false;
int ModePwm=pwm1pin; int ModePwm = pwm1pin;
generalgpio gengpio; generalgpio gengpio;
public:
pwmgpio(); public:
pwmgpio();
~pwmgpio(); ~pwmgpio();
int SetPllNumber(int PllNo,int MashType); int SetPllNumber(int PllNo, int MashType);
uint64_t GetPllFrequency(int PllNo); uint64_t GetPllFrequency(int PllNo);
int SetFrequency(uint64_t Frequency); int SetFrequency(uint64_t Frequency);
int SetPrediv(int predivisor); int SetPrediv(int predivisor);
void SetMode(int Mode); void SetMode(int Mode);
void enablepwm(int gpio,int PwmNumber); void enablepwm(int gpio, int PwmNumber);
void disablepwm(int gpio); void disablepwm(int gpio);
}; };
//******************************* PCM GPIO (I2S) *********************************** //******************************* PCM GPIO (I2S) ***********************************
#define PCM_BASE (0x00203000) #define PCM_BASE (0x00203000)
#define PCM_LEN 0x24 #define PCM_LEN 0x24
#define PCM_CS_A (0x00/4) #define PCM_CS_A (0x00 / 4)
#define PCM_FIFO_A (0x04/4) #define PCM_FIFO_A (0x04 / 4)
#define PCM_MODE_A (0x08/4) #define PCM_MODE_A (0x08 / 4)
#define PCM_RXC_A (0x0c/4) #define PCM_RXC_A (0x0c / 4)
#define PCM_TXC_A (0x10/4) #define PCM_TXC_A (0x10 / 4)
#define PCM_DREQ_A (0x14/4) #define PCM_DREQ_A (0x14 / 4)
#define PCM_INTEN_A (0x18/4) #define PCM_INTEN_A (0x18 / 4)
#define PCM_INT_STC_A (0x1c/4) #define PCM_INT_STC_A (0x1c / 4)
#define PCM_GRAY (0x20/4) #define PCM_GRAY (0x20 / 4)
#define PCMCLK_CNTL (38) // Clk register #define PCMCLK_CNTL (38) // Clk register
#define PCMCLK_DIV (39) // Clk register #define PCMCLK_DIV (39) // Clk register
class pcmgpio:public gpio class pcmgpio : public gpio
{ {
protected: protected:
clkgpio clk; clkgpio clk;
int pllnumber; int pllnumber;
int Mash; int Mash;
int Prediv; //Range of PCM int Prediv; //Range of PCM
uint64_t Pllfrequency; uint64_t Pllfrequency;
int SetPrediv(int predivisor); int SetPrediv(int predivisor);
public: public:
pcmgpio(); pcmgpio();
~pcmgpio(); ~pcmgpio();
int SetPllNumber(int PllNo,int MashType); int SetPllNumber(int PllNo, int MashType);
uint64_t GetPllFrequency(int PllNo); uint64_t GetPllFrequency(int PllNo);
int SetFrequency(uint64_t Frequency); int SetFrequency(uint64_t Frequency);
int ComputePrediv(uint64_t Frequency); int ComputePrediv(uint64_t Frequency);
}; };
//******************************* PAD GPIO (Amplitude) *********************************** //******************************* PAD GPIO (Amplitude) ***********************************
#define PADS_GPIO (0x00100000) #define PADS_GPIO (0x00100000)
#define PADS_GPIO_LEN (0x40/4) #define PADS_GPIO_LEN (0x40 / 4)
#define PADS_GPIO_0 (0x2C/4) #define PADS_GPIO_0 (0x2C / 4)
#define PADS_GPIO_1 (0x30/4) #define PADS_GPIO_1 (0x30 / 4)
#define PADS_GPIO_2 (0x34/4) #define PADS_GPIO_2 (0x34 / 4)
class padgpio:public gpio class padgpio : public gpio
{ {
public: public:
padgpio(); padgpio();
~padgpio(); ~padgpio();
int setlevel(int level); int setlevel(int level);
}; };
enum dma_common_reg
{
dma_pllc_frac = 0x7E000000 + (PLLC_FRAC << 2) + CLK_BASE,
dma_pwm = 0x7E000000 + (PWM_FIFO << 2) + PWM_BASE,
dma_pcm = 0x7E000000 + (PCM_FIFO_A << 2) + PCM_BASE,
dma_fsel = 0x7E000000 + (GPFSEL0 << 2) + GENERAL_BASE,
dma_pad = 0x7E000000 + (PADS_GPIO_0 << 2) + PADS_GPIO
};
#endif #endif

Wyświetl plik

@ -81,55 +81,20 @@ void iqdmasync::SetDmaAlgo()
for (uint32_t samplecnt = 0; samplecnt < buffersize; samplecnt++) for (uint32_t samplecnt = 0; samplecnt < buffersize; samplecnt++)
{ {
SetEasyCB(cbp,samplecnt*registerbysample+1,dma_pad,1);
//@0
//Set Amplitude by writing to PADS
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ;
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample+1]);
cbp->dst = 0x7E000000+(PADS_GPIO_0<<2)+PADS_GPIO;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++; cbp++;
//@2 Write a frequency sample : Order of DMA CS influence maximum rate : here 0,2,1 is the best : why !!!!!! //@2 Write a frequency sample : Order of DMA CS influence maximum rate : here 0,2,1 is the best : why !!!!!!
SetEasyCB(cbp,samplecnt*registerbysample,dma_pllc_frac,1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ;
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample]);
cbp->dst = 0x7E000000 + (PLLC_FRAC<<2) + CLK_BASE ;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next);
cbp++; cbp++;
//@1 //@1
//Set Amplitude to FSEL for amplitude=0 //Set Amplitude to FSEL for amplitude=0
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp,samplecnt*registerbysample+2,dma_fsel,1);
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample+2]);
cbp->dst = 0x7E000000 + (GPFSEL0<<2)+GENERAL_BASE;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++; cbp++;
//@3 Delay //@3 Delay
if(syncwithpwm) SetEasyCB(cbp,samplecnt*registerbysample,syncwithpwm?dma_pwm:dma_pcm,1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info =BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(&usermem[(samplecnt+1)*registerbysample]);//mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if(syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO<<2) + PWM_BASE ;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A<<2) + PCM_BASE ;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next); //fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next);
cbp++; cbp++;

Wyświetl plik

@ -26,4 +26,4 @@ This program is free software: you can redistribute it and/or modify
#include "fskburst.h" #include "fskburst.h"
#include "dsp.h" #include "dsp.h"
#include "ookburst.h" #include "ookburst.h"
#include "atv.h" #include "atv.h"

Wyświetl plik

@ -74,31 +74,12 @@ void ngfmdmasync::SetDmaAlgo()
// Write a frequency sample // Write a frequency sample
SetEasyCB(cbp,samplecnt*registerbysample,dma_pllc_frac,1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ;
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample]);
cbp->dst = 0x7E000000 + (PLLC_FRAC<<2) + CLK_BASE ;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next);
cbp++; cbp++;
// Delay // Delay
if(syncwithpwm) SetEasyCB(cbp,samplecnt*registerbysample,syncwithpwm?dma_pwm:dma_pcm,1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if(syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO<<2) + PWM_BASE ;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A<<2) + PCM_BASE ;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next);
cbp++; cbp++;
} }
@ -119,7 +100,7 @@ void ngfmdmasync::SetFrequencySample(uint32_t Index,float Frequency)
void ngfmdmasync::SetFrequencySamples(float *sample,size_t Size) void ngfmdmasync::SetFrequencySamples(float *sample,size_t Size)
{ {
size_t NbWritten=0; size_t NbWritten=0;
int OSGranularity=100; int OSGranularity=200;
long int start_time; long int start_time;
long time_difference=0; long time_difference=0;
@ -133,19 +114,20 @@ void ngfmdmasync::SetFrequencySamples(float *sample,size_t Size)
int TimeToSleep=1e6*((int)buffersize*3/4-Available)/SampleRate-OSGranularity; // Sleep for theorically fill 3/4 of Fifo int TimeToSleep=1e6*((int)buffersize*3/4-Available)/SampleRate-OSGranularity; // Sleep for theorically fill 3/4 of Fifo
if(TimeToSleep>0) if(TimeToSleep>0)
{ {
//fprintf(stderr,"buffer size %d Available %d SampleRate %d Sleep %d\n",buffersize,Available,SampleRate,TimeToSleep); fprintf(stderr,"buffer size %d Available %d SampleRate %d Sleep %d\n",buffersize,Available,SampleRate,TimeToSleep);
usleep(TimeToSleep); usleep(TimeToSleep);
} }
else else
{ {
//fprintf(stderr,"No Sleep %d\n",TimeToSleep); fprintf(stderr,"No Sleep %d\n",TimeToSleep);
sched_yield(); sched_yield();
} }
clock_gettime(CLOCK_REALTIME, &gettime_now); clock_gettime(CLOCK_REALTIME, &gettime_now);
time_difference = gettime_now.tv_nsec - start_time; time_difference = gettime_now.tv_nsec - start_time;
if(time_difference<0) time_difference+=1E9; if(time_difference<0) time_difference+=1E9;
//fprintf(stderr,"Measure samplerate=%d\n",(int)((GetBufferAvailable()-Available)*1e9/time_difference)); int NewAvailable=GetBufferAvailable();
Available=GetBufferAvailable(); fprintf(stderr,"Newavailable %d Measure samplerate=%d\n",NewAvailable,(int)((GetBufferAvailable()-Available)*1e9/time_difference));
Available=NewAvailable;
int Index=GetUserMemIndex(); int Index=GetUserMemIndex();
int ToWrite=((int)Size-(int)NbWritten)<Available?Size-NbWritten:Available; int ToWrite=((int)Size-(int)NbWritten)<Available?Size-NbWritten:Available;

Wyświetl plik

@ -61,69 +61,31 @@ This program is free software: you can redistribute it and/or modify
// PCM FIFO = 64 // PCM FIFO = 64
if(syncwithpwm) if(syncwithpwm)
{ {
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM); SetEasyCB(cbp++,0,dma_pwm,16+1);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
cbp->dst = 0x7E000000 + (PWM_FIFO<<2) + PWM_BASE ;
cbp->length = 4*(16+1);
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
} }
else else
{ {
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX); SetEasyCB(cbp++,0,dma_pcm,64+1);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed PCM
cbp->dst = 0x7E000000 + (PCM_FIFO_A<<2) + PCM_BASE ;
cbp->length = 4*(64+1);
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next);
cbp++;
} }
for (uint32_t samplecnt = 0; samplecnt < buffersize-2; samplecnt++) for (uint32_t samplecnt = 0; samplecnt < buffersize-2; samplecnt++)
{ {
//Set Amplitude to FSEL for amplitude=0 //Set Amplitude to FSEL for amplitude=0
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp++,samplecnt*registerbysample,dma_fsel,1);
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample]);
cbp->dst = 0x7E000000 + (GPFSEL0<<2)+GENERAL_BASE;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay // Delay
if(syncwithpwm) SetEasyCB(cbp++,samplecnt*registerbysample,syncwithpwm?dma_pwm:dma_pcm,1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM);
else
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
if(syncwithpwm)
cbp->dst = 0x7E000000 + (PWM_FIFO<<2) + PWM_BASE ;
else
cbp->dst = 0x7E000000 + (PCM_FIFO_A<<2) + PCM_BASE ;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %d pointer %p src %x dest %x next %x\n",samplecnt,cbp,cbp->src,cbp->dst,cbp->next);
cbp++;
} }
lastcbp=cbp; lastcbp=cbp;
// Last CBP before stopping : disable output // Last CBP before stopping : disable output
sampletab[buffersize*registerbysample-1]=(Originfsel & ~(7 << 12)) | (0 << 12); //Disable Clk sampletab[buffersize*registerbysample-1]=(Originfsel & ~(7 << 12)) | (0 << 12); //Disable Clk
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP ; SetEasyCB(cbp,buffersize*registerbysample-1,dma_fsel,1);
cbp->src = mem_virt_to_phys(&usermem[(buffersize*registerbysample-1)]);
cbp->dst = 0x7E000000 + (GPFSEL0<<2)+GENERAL_BASE;
cbp->length = 4;
cbp->stride = 0;
cbp->next = 0; // Stop DMA cbp->next = 0; // Stop DMA
//fprintf(stderr,"Last cbp %p: src %x dest %x next %x\n",cbp,cbp->src,cbp->dst,cbp->next);
} }
void ookburst::SetSymbols(unsigned char *Symbols,uint32_t Size) void ookburst::SetSymbols(unsigned char *Symbols,uint32_t Size)
{ {

Wyświetl plik

@ -62,17 +62,10 @@ void serialdmasync::SetDmaAlgo()
for (uint32_t samplecnt = 0; samplecnt < buffersize; samplecnt++) for (uint32_t samplecnt = 0; samplecnt < buffersize; samplecnt++)
{ {
SetEasyCB(cbp,samplecnt*registerbysample,dma_pwm,1);
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PWM); cbp++;
cbp->src = mem_virt_to_phys(&usermem[samplecnt*registerbysample]);
cbp->dst = 0x7E000000 + (PWM_FIFO<<2) + PWM_BASE ;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
//fprintf(stderr,"cbp : sample %x src %x dest %x next %x\n",samplecnt,cbp->src,cbp->dst,cbp->next);
cbp++;
} }
cbp--; cbp--;
cbp->next = mem_virt_to_phys(cbarray); // We loop to the first CB cbp->next = mem_virt_to_phys(cbarray); // We loop to the first CB

14
src/util.h 100644
Wyświetl plik

@ -0,0 +1,14 @@
#ifndef DEF_UTIL
#define DEF_UTIL
#include <stdio.h>
#include <stdarg.h>
void dbg_printf(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
}
#endif