F5OEO-ft8_lib/decode_ft8.cpp

441 wiersze
14 KiB
C++
Czysty Zwykły widok Historia

#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
2018-12-24 12:22:26 +00:00
#include "ft8/unpack_v2.h"
#include "ft8/ldpc.h"
2018-12-24 12:22:26 +00:00
#include "ft8/constants.h"
2018-12-24 12:22:26 +00:00
#include "common/wave.h"
#include "fft/kiss_fftr.h"
const int kMax_candidates = 100;
const int kLDPC_iterations = 20;
const int kMax_decoded_messages = 50;
const int kMax_message_length = 20;
void usage() {
printf("Decode a 15-second WAV file.\n");
}
float hann_i(int i, int N) {
float x = sinf((float)M_PI * i / (N - 1));
return x*x;
}
float hamming_i(int i, int N) {
const float a0 = (float)25 / 46;
const float a1 = 1 - a0;
float x1 = cosf(2 * (float)M_PI * i / (N - 1));
return a0 - a1*x1;
}
float blackman_i(int i, int N) {
const float alpha = 0.16f; // or 2860/18608
const float a0 = (1 - alpha) / 2;
const float a1 = 1.0f / 2;
const float a2 = alpha / 2;
float x1 = cosf(2 * (float)M_PI * i / (N - 1));
float x2 = cosf(4 * (float)M_PI * i / (N - 1));
return a0 - a1*x1 + a2*x2;
}
2018-11-12 10:49:35 +00:00
struct Candidate {
int16_t score;
int16_t time_offset;
int16_t freq_offset;
2018-11-13 11:04:36 +00:00
uint8_t time_sub;
uint8_t freq_sub;
2018-11-12 10:49:35 +00:00
};
void heapify_down(Candidate *heap, int heap_size) {
2018-11-13 11:04:36 +00:00
// heapify from the root down
int current = 0;
while (true) {
int largest = current;
int left = 2 * current + 1;
int right = left + 1;
if (left < heap_size && heap[left].score < heap[largest].score) {
largest = left;
}
if (right < heap_size && heap[right].score < heap[largest].score) {
largest = right;
}
if (largest == current) {
break;
}
Candidate tmp = heap[largest];
heap[largest] = heap[current];
heap[current] = tmp;
current = largest;
}
}
void heapify_up(Candidate *heap, int heap_size) {
2018-11-13 11:04:36 +00:00
// heapify from the last node up
int current = heap_size - 1;
while (current > 0) {
int parent = (current - 1) / 2;
if (heap[current].score >= heap[parent].score) {
break;
}
Candidate tmp = heap[parent];
heap[parent] = heap[current];
heap[current] = tmp;
current = parent;
}
}
// Find top N candidates in frequency and time according to their sync strength (looking at Costas symbols)
2018-11-20 15:04:05 +00:00
// We treat and organize the candidate list as a min-heap (empty initially).
2018-12-24 12:22:26 +00:00
int find_sync(const uint8_t *power, int num_blocks, int num_bins, const uint8_t *sync_map, int num_candidates, Candidate *heap) {
2018-11-12 10:49:35 +00:00
int heap_size = 0;
for (int alt = 0; alt < 4; ++alt) {
for (int time_offset = -7; time_offset < num_blocks - FT8_NN + 7; ++time_offset) {
2018-11-13 11:04:36 +00:00
for (int freq_offset = 0; freq_offset < num_bins - 8; ++freq_offset) {
2018-11-12 10:49:35 +00:00
int score = 0;
2018-11-13 15:16:24 +00:00
// Compute score over Costas symbols (0-7, 36-43, 72-79)
int num_scores = 0;
2018-11-12 10:49:35 +00:00
for (int m = 0; m <= 72; m += 36) {
for (int k = 0; k < 7; ++k) {
if (time_offset + k + m < 0) continue;
if (time_offset + k + m >= num_blocks) break;
2018-11-13 11:04:36 +00:00
int offset = ((time_offset + k + m) * 4 + alt) * num_bins + freq_offset;
2018-11-26 14:47:45 +00:00
score += 8 * (int)power[offset + sync_map[k]] -
2018-11-12 10:49:35 +00:00
power[offset + 0] - power[offset + 1] -
power[offset + 2] - power[offset + 3] -
power[offset + 4] - power[offset + 5] -
power[offset + 6] - power[offset + 7];
++num_scores;
2018-11-12 10:49:35 +00:00
}
}
score /= num_scores;
2018-11-12 10:49:35 +00:00
2018-11-13 15:16:24 +00:00
// If the heap is full AND the current candidate is better than
2018-11-20 15:04:05 +00:00
// the worst in the heap, we remove the worst and make space
2018-11-12 10:49:35 +00:00
if (heap_size == num_candidates && score > heap[0].score) {
heap[0] = heap[heap_size - 1];
--heap_size;
2018-11-13 11:04:36 +00:00
heapify_down(heap, heap_size);
2018-11-12 10:49:35 +00:00
}
2018-11-13 15:16:24 +00:00
// If there's free space in the heap, we add the current candidate
2018-11-12 10:49:35 +00:00
if (heap_size < num_candidates) {
heap[heap_size].score = score;
2018-11-13 11:04:36 +00:00
heap[heap_size].time_offset = time_offset;
heap[heap_size].freq_offset = freq_offset;
heap[heap_size].time_sub = alt / 2;
heap[heap_size].freq_sub = alt % 2;
2018-11-12 10:49:35 +00:00
++heap_size;
2018-11-13 11:04:36 +00:00
heapify_up(heap, heap_size);
2018-11-12 10:49:35 +00:00
}
}
}
}
2018-12-24 12:22:26 +00:00
return heap_size;
2018-11-12 10:49:35 +00:00
}
2018-11-13 11:04:36 +00:00
// Compute FFT magnitudes (log power) for each timeslot in the signal
void extract_power(const float *signal, int num_blocks, int num_bins, uint8_t *power) {
2018-11-12 10:49:35 +00:00
const int block_size = 2 * num_bins; // Average over 2 bins per FSK tone
const int nfft = 2 * block_size; // We take FFT of two blocks, advancing by one
float window[nfft];
for (int i = 0; i < nfft; ++i) {
window[i] = blackman_i(i, nfft);
2018-11-12 10:49:35 +00:00
}
size_t fft_work_size;
kiss_fftr_alloc(nfft, 0, 0, &fft_work_size);
printf("N_FFT = %d\n", nfft);
printf("FFT work area = %lu\n", fft_work_size);
2018-12-24 12:22:26 +00:00
void * fft_work = malloc(fft_work_size);
2018-11-12 10:49:35 +00:00
kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size);
int offset = 0;
2018-11-13 11:04:36 +00:00
float fft_norm = 1.0f / nfft;
2018-12-24 12:22:26 +00:00
float max_mag = -100.0f;
2018-11-12 10:49:35 +00:00
for (int i = 0; i < num_blocks; ++i) {
// Loop over two possible time offsets (0 and block_size/2)
2018-11-13 11:04:36 +00:00
for (int time_sub = 0; time_sub <= block_size/2; time_sub += block_size/2) {
2018-11-12 10:49:35 +00:00
kiss_fft_scalar timedata[nfft];
kiss_fft_cpx freqdata[nfft/2 + 1];
float mag_db[nfft/2 + 1];
// Extract windowed signal block
for (int j = 0; j < nfft; ++j) {
2018-11-13 11:04:36 +00:00
timedata[j] = window[j] * signal[(i * block_size) + (j + time_sub)];
2018-11-12 10:49:35 +00:00
}
kiss_fftr(fft_cfg, timedata, freqdata);
// Compute log magnitude in decibels
for (int j = 0; j < nfft/2 + 1; ++j) {
2018-12-24 12:22:26 +00:00
float mag2 = (freqdata[j].i * freqdata[j].i + freqdata[j].r * freqdata[j].r);
mag_db[j] = 10.0f * log10f(1.0E-10f + mag2 * fft_norm);
2018-11-12 10:49:35 +00:00
}
// Loop over two possible frequency bin offsets (for averaging)
2018-11-13 11:04:36 +00:00
for (int freq_sub = 0; freq_sub < 2; ++freq_sub) {
2018-11-12 10:49:35 +00:00
for (int j = 0; j < num_bins; ++j) {
2018-11-13 11:04:36 +00:00
float db1 = mag_db[j * 2 + freq_sub];
float db2 = mag_db[j * 2 + freq_sub + 1];
2018-11-12 10:49:35 +00:00
float db = (db1 + db2) / 2;
2018-12-24 12:22:26 +00:00
// Scale decibels to unsigned 8-bit range and clamp the value
2018-11-13 15:16:24 +00:00
int scaled = (int)(2 * (db + 100));
2018-11-12 10:49:35 +00:00
power[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled);
++offset;
2018-12-24 12:22:26 +00:00
if (db > max_mag) max_mag = db;
2018-11-12 10:49:35 +00:00
}
}
}
}
2018-12-24 12:22:26 +00:00
printf("Max magnitude: %.1f dB\n", max_mag);
2018-11-12 10:49:35 +00:00
free(fft_work);
}
float max2(float a, float b) {
2018-11-13 15:16:24 +00:00
return (a >= b) ? a : b;
}
float max4(float a, float b, float c, float d) {
return max2(max2(a, b), max2(c, d));
2018-11-13 15:16:24 +00:00
}
// Compute log likelihood log(p(1) / p(0)) of 174 message bits
2018-11-13 15:16:24 +00:00
// for later use in soft-decision LDPC decoding
2018-11-26 14:47:45 +00:00
void extract_likelihood(const uint8_t *power, int num_bins, const Candidate & cand, const uint8_t *code_map, float *log174) {
int offset = (cand.time_offset * 4 + cand.time_sub * 2 + cand.freq_sub) * num_bins + cand.freq_offset;
2018-11-13 15:16:24 +00:00
// Go over FSK tones and skip Costas sync symbols
const int n_syms = 1;
const int n_bits = 3 * n_syms;
const int n_tones = (1 << n_bits);
for (int k = 0; k < FT8_ND; k += n_syms) {
int sym_idx = (k < FT8_ND / 2) ? (k + 7) : (k + 14);
2018-11-13 15:16:24 +00:00
// Pointer to 8 bins of the current symbol
const uint8_t *ps = power + (offset + sym_idx * 4 * num_bins);
float s2[n_tones];
for (int j = 0; j < n_tones; ++j) {
int j1 = j & 0x07;
s2[j] = (float)ps[code_map[j1]];
//int j2 = (j >> 3) & 0x07;
//s2[j] = (float)ps[code_map[j2]];
//s2[j] += (float)ps[code_map[j1] + 4 * num_bins];
2018-11-26 14:47:45 +00:00
}
2018-11-13 15:16:24 +00:00
// Extract bit significance (and convert them to float)
// 8 FSK tones = 3 bits
int bit_idx = 3 * k;
for (int i = 0; i < n_bits; ++i) {
uint16_t mask = (n_tones >> (i + 1));
float max_zero = -1000, max_one = -1000;
for (int n = 0; n < n_tones; ++n) {
if (n & mask) {
max_one = max2(max_one, s2[n]);
}
else {
max_zero = max2(max_zero, s2[n]);
}
}
if (bit_idx + i >= 174) break;
log174[bit_idx + i] = max_one - max_zero;
}
// log174[bit_idx + 0] = max4(s2[4], s2[5], s2[6], s2[7]) - max4(s2[0], s2[1], s2[2], s2[3]);
// log174[bit_idx + 1] = max4(s2[2], s2[3], s2[6], s2[7]) - max4(s2[0], s2[1], s2[4], s2[5]);
// log174[bit_idx + 2] = max4(s2[1], s2[3], s2[5], s2[7]) - max4(s2[0], s2[2], s2[4], s2[6]);
2018-11-13 15:16:24 +00:00
}
// Compute the variance of log174
float sum = 0;
float sum2 = 0;
float inv_n = 1.0f / FT8_N;
for (int i = 0; i < FT8_N; ++i) {
2018-11-13 15:16:24 +00:00
sum += log174[i];
sum2 += log174[i] * log174[i];
}
2018-11-20 15:04:05 +00:00
float variance = (sum2 - sum * sum * inv_n) * inv_n;
2018-11-13 15:16:24 +00:00
// Normalize log174 such that sigma = 2.83 (Why? It's in WSJT-X)
float norm_factor = 3.83f / sqrtf(variance);
for (int i = 0; i < FT8_N; ++i) {
2018-11-13 15:16:24 +00:00
log174[i] *= norm_factor;
//printf("%.1f ", log174[i]);
}
//printf("\n");
}
2018-11-26 14:47:45 +00:00
2018-12-24 12:22:26 +00:00
void test_tones(float *log174) {
for (int i = 0; i < FT8_ND; ++i) {
const uint8_t inv_map[8] = {0, 1, 3, 2, 6, 4, 5, 7};
uint8_t tone = ("0000000011721762454112705354533170166234757420515470163426"[i]) - '0';
uint8_t b3 = inv_map[tone];
log174[3 * i] = (b3 & 4) ? +1.0 : -1.0;
log174[3 * i + 1] = (b3 & 2) ? +1.0 : -1.0;
log174[3 * i + 2] = (b3 & 1) ? +1.0 : -1.0;
}
// 3140652 00000000117217624541127053545 3140652 33170166234757420515470163426 3140652
// 0000000011721762454112705354533170166234757420515470163426
// 0000000011721762454112705454544170166344757430515470073537
// 0000000011711761444111704343433170166233747320414370072427
// 0000000011711761454111705353533170166233757320515370072527
}
void print_tones(const uint8_t *code_map, const float *log174) {
for (int k = 0; k < 3 * FT8_ND; k += 3) {
uint8_t max = 0;
if (log174[k + 0] > 0) max |= 4;
if (log174[k + 1] > 0) max |= 2;
if (log174[k + 2] > 0) max |= 1;
printf("%d", code_map[max]);
}
printf("\n");
}
int main(int argc, char **argv) {
// Expect one command-line argument
if (argc < 2) {
usage();
return -1;
}
const char *wav_path = argv[1];
int sample_rate = 12000;
int num_samples = 15 * sample_rate;
float signal[num_samples];
int rc = load_wav(signal, num_samples, sample_rate, wav_path);
if (rc < 0) {
return -1;
}
const float fsk_dev = 6.25f; // tone deviation in Hz and symbol rate
2018-11-13 11:04:36 +00:00
// Compute DSP parameters that depend on the sample rate
2018-11-13 11:04:36 +00:00
const int num_bins = (int)(sample_rate / (2 * fsk_dev));
2018-11-12 10:49:35 +00:00
const int block_size = 2 * num_bins;
const int num_blocks = (num_samples - (block_size/2) - block_size) / block_size;
2018-11-13 11:04:36 +00:00
printf("%d blocks, %d bins\n", num_blocks, num_bins);
// Compute FFT over the whole signal and store it
uint8_t power[num_blocks * 4 * num_bins];
2018-11-13 11:04:36 +00:00
extract_power(signal, num_blocks, num_bins, power);
Candidate heap[kMax_candidates];
char decoded[kMax_decoded_messages][kMax_message_length];
int num_decoded = 0;
int num_candidates = find_sync(power, num_blocks, num_bins, kCostas_map, kMax_candidates, heap);
2018-11-13 11:04:36 +00:00
for (int idx = 0; idx < num_candidates; ++idx) {
Candidate &cand = heap[idx];
2018-11-13 15:16:24 +00:00
float log174[FT8_N];
2018-12-24 12:22:26 +00:00
extract_likelihood(power, num_bins, cand, kGray_map, log174);
2018-11-13 15:16:24 +00:00
// bp_decode() produces better decodes, uses way less memory
uint8_t plain[FT8_N];
int n_errors = 0;
bp_decode(log174, kLDPC_iterations, plain, &n_errors);
//ldpc_decode(log174, num_iters, plain, &n_errors);
if (n_errors > 0) {
//printf("ldpc_decode() = %d\n", n_errors);
continue;
}
2018-11-20 15:04:05 +00:00
float freq_hz = (cand.freq_offset + cand.freq_sub / 2.0f) * fsk_dev;
float time_sec = (cand.time_offset + cand.time_sub / 2.0f) / fsk_dev;
2018-11-20 15:04:05 +00:00
// printf("%03d: score = %d freq = %.1f time = %.2f\n", idx,
// cand.score, freq_hz, time_sec);
2018-12-24 12:22:26 +00:00
//print_tones(kGray_map, log174);
// Extract payload + CRC
uint8_t a91[12];
uint8_t mask = 0x80;
int byte_idx = 0;
for (int i = 0; i < 12; ++i) {
a91[i] = 0;
}
for (int i = 0; i < FT8_K; ++i) {
if (plain[i]) {
a91[byte_idx] |= mask;
2018-11-20 15:04:05 +00:00
}
mask >>= 1;
if (!mask) {
mask = 0x80;
++byte_idx;
2018-11-20 15:04:05 +00:00
}
}
// TODO: check CRC
2018-11-20 15:04:05 +00:00
// for (int i = 0; i < 12; ++i) {
// printf("%02x ", a91[i]);
// }
// printf("\n");
2018-12-24 12:22:26 +00:00
char message[kMax_message_length];
unpack77(a91, message);
// Check for duplicate messages
bool found = false;
for (int i = 0; i < num_decoded; ++i) {
if (0 == strcmp(decoded[i], message)) {
found = true;
break;
}
}
2018-11-20 15:04:05 +00:00
if (!found && num_decoded < kMax_decoded_messages) {
strcpy(decoded[num_decoded], message);
++num_decoded;
2018-11-20 15:04:05 +00:00
2018-12-24 12:22:26 +00:00
// Fake WSJT-X-like output for now
int snr = 0; // TODO: compute SNR
printf("000000 %3d %4.1f %4d ~ %s\n", snr, time_sec, (int)(freq_hz + 0.5f), message);
2018-11-13 15:16:24 +00:00
}
2018-11-13 11:04:36 +00:00
}
printf("Decoded %d messages\n", num_decoded);
2018-11-13 11:04:36 +00:00
return 0;
}