F5OEO-WsprryPi/wspr.cpp

855 wiersze
26 KiB
C++

// WSPR transmitter for the Raspberry Pi. See accompanying README
// file for a description on how to use this code.
// License:
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ha7ilm: added RPi2 support based on a patch to PiFmRds by Cristophe
// Jacquet and Richard Hirst: http://git.io/vn7O9
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <dirent.h>
#include <math.h>
#include <cmath>
#include <cstdint>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <signal.h>
#include <malloc.h>
#include <time.h>
#include <sys/time.h>
#include <getopt.h>
#include <vector>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <algorithm>
#include <pthread.h>
#include <sys/timex.h>
#include "librpitx/src/librpitx.h"
clkgpio *clk=NULL;
ngfmdmasync *ngfmtest=NULL;
#define ABORT(a) exit(a)
// Used for debugging
#define MARK std::cout << "Currently in file: " << __FILE__ << " line: " << __LINE__ << std::endl
typedef enum {WSPR,TONE} mode_type;
// WSRP nominal symbol time
#define WSPR_SYMTIME (8192.0/12000.0)
// How much random frequency offset should be added to WSPR transmissions
// if the --offset option has been turned on.
#define WSPR_RAND_OFFSET 80
#define WSPR15_RAND_OFFSET 8
// Disable the PWM clock and wait for it to become 'not busy'.
void disable_clock() {
}
// Turn on TX
void txon() {
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 7; //16mA +10.6dBm
disable_clock();
}
// Turn transmitter on
void txoff() {
disable_clock();
}
// Transmit symbol sym for tsym seconds.
//
// TODO:
// Upon entering this function at the beginning of a WSPR transmission, we
// do not know which DMA table entry is being processed by the DMA engine.
#define PWM_CLOCKS_PER_ITER_NOMINAL 1000
void txSym(
const int & sym_num,
const double & center_freq,
const double & tone_spacing,
const double & tsym,
const std::vector <double> & dma_table_freq,
const double & f_pwm_clk,
struct PageInfo instrs[],
struct PageInfo & constPage,
int & bufPtr
) {
}
// Turn off (reset) DMA engine
void unSetupDMA(){
txoff();
}
// Truncate at bit lsb. i.e. set all bits less than lsb to zero.
double bit_trunc(
const double & d,
const int & lsb
) {
return floor(d/pow(2.0,lsb))*pow(2.0,lsb);
}
// Convert string to uppercase
void to_upper(
char *str
) {
while(*str) {
*str = toupper(*str);
str++;
}
}
// Encode call, locator, and dBm into WSPR codeblock.
void wspr(
const char* call,
const char* l_pre,
const char* dbm,
unsigned char* symbols
) {
// pack prefix in nadd, call in n1, grid, dbm in n2
char* c, buf[16];
strncpy(buf, call, 16);
c=buf;
to_upper(c);
unsigned long ng,nadd=0;
if(strchr(c, '/')){ //prefix-suffix
nadd=2;
int i=strchr(c, '/')-c; //stroke position
int n=strlen(c)-i-1; //suffix len, prefix-call len
c[i]='\0';
if(n==1) ng=60000-32768+(c[i+1]>='0'&&c[i+1]<='9'?c[i+1]-'0':c[i+1]==' '?38:c[i+1]-'A'+10); // suffix /A to /Z, /0 to /9
if(n==2) ng=60000+26+10*(c[i+1]-'0')+(c[i+2]-'0'); // suffix /10 to /99
if(n>2){ // prefix EA8/, right align
ng=(i<3?36:c[i-3]>='0'&&c[i-3]<='9'?c[i-3]-'0':c[i-3]-'A'+10);
ng=37*ng+(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
ng=37*ng+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
if(ng<32768) nadd=1; else ng=ng-32768;
c=c+i+1;
}
}
int i=(isdigit(c[2])?2:isdigit(c[1])?1:0); //last prefix digit of de-suffixed/de-prefixed callsign
int n=strlen(c)-i-1; //2nd part of call len
unsigned long n1;
n1=(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
n1=36*n1+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
n1=10*n1+c[i]-'0';
n1=27*n1+(n<1?26:c[i+1]-'A');
n1=27*n1+(n<2?26:c[i+2]-'A');
n1=27*n1+(n<3?26:c[i+3]-'A');
//if(rand() % 2) nadd=0;
if(!nadd){
// Copy locator locally since it is declared const and we cannot modify
// its contents in-place.
char l[4];
strncpy(l, l_pre, 4);
to_upper(l); //grid square Maidenhead locator (uppercase)
ng=180*(179-10*(l[0]-'A')-(l[2]-'0'))+10*(l[1]-'A')+(l[3]-'0');
}
int p = atoi(dbm); //EIRP in dBm={0,3,7,10,13,17,20,23,27,30,33,37,40,43,47,50,53,57,60}
int corr[]={0,-1,1,0,-1,2,1,0,-1,1};
p=p>60?60:p<0?0:p+corr[p%10];
unsigned long n2=(ng<<7)|(p+64+nadd);
// pack n1,n2,zero-tail into 50 bits
char packed[11] = {
static_cast<char>(n1>>20),
static_cast<char>(n1>>12),
static_cast<char>(n1>>4),
static_cast<char>(((n1&0x0f)<<4)|((n2>>18)&0x0f)),
static_cast<char>(n2>>10),
static_cast<char>(n2>>2),
static_cast<char>((n2&0x03)<<6),
0,
0,
0,
0
};
// convolutional encoding K=32, r=1/2, Layland-Lushbaugh polynomials
int k = 0;
int j,s;
int nstate = 0;
unsigned char symbol[176];
for(j=0;j!=sizeof(packed);j++){
for(i=7;i>=0;i--){
unsigned long poly[2] = { 0xf2d05351L, 0xe4613c47L };
nstate = (nstate<<1) | ((packed[j]>>i)&1);
for(s=0;s!=2;s++){ //convolve
unsigned long n = nstate & poly[s];
int even = 0; // even := parity(n)
while(n){
even = 1 - even;
n = n & (n - 1);
}
symbol[k] = even;
k++;
}
}
}
// interleave symbols
const unsigned char npr3[162] = {
1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,
0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,
0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,1,
0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,
0,0 };
for(i=0;i!=162;i++){
// j0 := bit reversed_values_smaller_than_161[i]
unsigned char j0;
p=-1;
for(k=0;p!=i;k++){
for(j=0;j!=8;j++) // j0:=bit_reverse(k)
j0 = ((k>>j)&1)|(j0<<1);
if(j0<162)
p++;
}
symbols[j0]=npr3[j0]|symbol[i]<<1; //interleave and add sync std::vector
}
}
// Wait for the system clock's minute to reach one second past 'minute'
void wait_every(
int minute
) {
time_t t;
struct tm* ptm;
for(;;){
time(&t);
ptm = gmtime(&t);
if((ptm->tm_min % minute) == 0 && ptm->tm_sec == 0) break;
usleep(1000);
}
usleep(1000000); // wait another second
}
void print_usage() {
std::cout << "Usage:" << std::endl;
std::cout << " wspr [options] callsign locator tx_pwr_dBm f1 <f2> <f3> ..." << std::endl;
std::cout << " OR" << std::endl;
std::cout << " wspr [options] --test-tone f" << std::endl;
std::cout << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h --help" << std::endl;
std::cout << " Print out this help screen." << std::endl;
std::cout << " -p --ppm ppm" << std::endl;
std::cout << " Known PPM correction to 19.2MHz RPi nominal crystal frequency." << std::endl;
std::cout << " -s --self-calibration" << std::endl;
std::cout << " Check NTP before every transmission to obtain the PPM error of the" << std::endl;
std::cout << " crystal (default setting!)." << std::endl;
std::cout << " -f --free-running" << std::endl;
std::cout << " Do not use NTP to correct frequency error of RPi crystal." << std::endl;
std::cout << " -r --repeat" << std::endl;
std::cout << " Repeatedly, and in order, transmit on all the specified command line freqs." << std::endl;
std::cout << " -x --terminate <n>" << std::endl;
std::cout << " Terminate after n transmissions have been completed." << std::endl;
std::cout << " -o --offset" << std::endl;
std::cout << " Add a random frequency offset to each transmission:" << std::endl;
std::cout << " +/- " << WSPR_RAND_OFFSET << " Hz for WSPR" << std::endl;
std::cout << " +/- " << WSPR15_RAND_OFFSET << " Hz for WSPR-15" << std::endl;
std::cout << " -t --test-tone freq" << std::endl;
std::cout << " Simply output a test tone at the specified frequency. Only used" << std::endl;
std::cout << " for debugging and to verify calibration." << std::endl;
std::cout << " -n --no-delay" << std::endl;
std::cout << " Transmit immediately, do not wait for a WSPR TX window. Used" << std::endl;
std::cout << " for testing only." << std::endl;
std::cout << std::endl;
std::cout << "Frequencies can be specified either as an absolute TX carrier frequency, or" << std::endl;
std::cout << "using one of the following strings. If a string is used, the transmission" << std::endl;
std::cout << "will happen in the middle of the WSPR region of the selected band." << std::endl;
std::cout << " LF LF-15 MF MF-15 160m 160m-15 80m 60m 40m 30m 20m 17m 15m 12m 10m 6m 4m 2m" << std::endl;
std::cout << "<B>-15 indicates the WSPR-15 region of band <B>." << std::endl;
std::cout << std::endl;
std::cout << "Transmission gaps can be created by specifying a TX frequency of 0" << std::endl;
}
void parse_commandline(
// Inputs
const int & argc,
char * const argv[],
// Outputs
std::string & callsign,
std::string & locator,
std::string & tx_power,
std::vector <double> & center_freq_set,
double & ppm,
bool & self_cal,
bool & repeat,
bool & random_offset,
double & test_tone,
bool & no_delay,
mode_type & mode,
int & terminate
) {
// Default values
ppm=0;
self_cal=true;
repeat=false;
random_offset=false;
test_tone=NAN;
no_delay=false;
mode=WSPR;
terminate=-1;
static struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ppm", required_argument, 0, 'p'},
{"self-calibration", no_argument, 0, 's'},
{"free-running", no_argument, 0, 'f'},
{"repeat", no_argument, 0, 'r'},
{"terminate", required_argument, 0, 'x'},
{"offset", no_argument, 0, 'o'},
{"test-tone", required_argument, 0, 't'},
{"no-delay", no_argument, 0, 'n'},
{0, 0, 0, 0}
};
while (true) {
/* getopt_long stores the option index here. */
int option_index = 0;
int c = getopt_long (argc, argv, "hp:sfrx:ot:n",
long_options, &option_index);
if (c == -1)
break;
switch (c) {
char * endp;
case 0:
// Code should only get here if a long option was given a non-null
// flag value.
std::cout << "Check code!" << std::endl;
ABORT(-1);
break;
case 'h':
print_usage();
ABORT(-1);
break;
case 'p':
ppm=strtod(optarg,&endp);
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse ppm value" << std::endl;
ABORT(-1);
}
break;
case 's':
self_cal=true;
break;
case 'f':
self_cal=false;
break;
case 'r':
repeat=true;
break;
case 'x':
terminate=strtol(optarg,&endp,10);
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse termination argument" << std::endl;
ABORT(-1);
}
if (terminate<1) {
std::cerr << "Error: termination parameter must be >= 1" << std::endl;
ABORT(-1);
}
break;
case 'o':
random_offset=true;
break;
case 't':
test_tone=strtod(optarg,&endp);
mode=TONE;
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse test tone frequency" << std::endl;
ABORT(-1);
}
break;
case 'n':
no_delay=true;
break;
case '?':
/* getopt_long already printed an error message. */
ABORT(-1);
default:
ABORT(-1);
}
}
// Parse the non-option parameters
unsigned int n_free_args=0;
while (optind<argc) {
// Check for callsign, locator, tx_power
if (n_free_args==0) {
callsign=argv[optind++];
n_free_args++;
continue;
}
if (n_free_args==1) {
locator=argv[optind++];
n_free_args++;
continue;
}
if (n_free_args==2) {
tx_power=argv[optind++];
n_free_args++;
continue;
}
// Must be a frequency
// First see if it is a string.
double parsed_freq;
if (!strcasecmp(argv[optind],"LF")) {
parsed_freq=137500.0;
} else if (!strcasecmp(argv[optind],"LF-15")) {
parsed_freq=137612.5;
} else if (!strcasecmp(argv[optind],"MF")) {
parsed_freq=475700.0;
} else if (!strcasecmp(argv[optind],"MF-15")) {
parsed_freq=475812.5;
} else if (!strcasecmp(argv[optind],"160m")) {
parsed_freq=1838100.0;
} else if (!strcasecmp(argv[optind],"160m-15")) {
parsed_freq=1838212.5;
} else if (!strcasecmp(argv[optind],"80m")) {
parsed_freq=3594100.0;
} else if (!strcasecmp(argv[optind],"60m")) {
parsed_freq=5288700.0;
} else if (!strcasecmp(argv[optind],"40m")) {
parsed_freq=7040100.0;
} else if (!strcasecmp(argv[optind],"30m")) {
parsed_freq=10140200.0;
} else if (!strcasecmp(argv[optind],"20m")) {
parsed_freq=14097100.0;
} else if (!strcasecmp(argv[optind],"17m")) {
parsed_freq=18106100.0;
} else if (!strcasecmp(argv[optind],"15m")) {
parsed_freq=21096100.0;
} else if (!strcasecmp(argv[optind],"12m")) {
parsed_freq=24926100.0;
} else if (!strcasecmp(argv[optind],"10m")) {
parsed_freq=28126100.0;
} else if (!strcasecmp(argv[optind],"6m")) {
parsed_freq=50294500.0;
} else if (!strcasecmp(argv[optind],"4m")) {
parsed_freq=70092500.0;
} else if (!strcasecmp(argv[optind],"2m")) {
parsed_freq=144490500.0;
} else if (!strcasecmp(argv[optind],"70cm")) {
parsed_freq=432300500.0;
} else {
// Not a string. See if it can be parsed as a double.
char * endp;
parsed_freq=strtod(argv[optind],&endp);
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse transmit frequency: " << argv[optind] << std::endl;
ABORT(-1);
}
}
optind++;
center_freq_set.push_back(parsed_freq);
}
// Convert to uppercase
transform(callsign.begin(),callsign.end(),callsign.begin(),::toupper);
transform(locator.begin(),locator.end(),locator.begin(),::toupper);
// Check consistency among command line options.
if (ppm&&self_cal) {
std::cout << "Warning: ppm value is being ignored!" << std::endl;
ppm=0.0;
}
if (mode==TONE) {
if ((callsign!="")||(locator!="")||(tx_power!="")||(center_freq_set.size()!=0)||random_offset) {
std::cerr << "Warning: callsign, locator, etc. are ignored when generating test tone" << std::endl;
}
random_offset=0;
if (test_tone<=0) {
std::cerr << "Error: test tone frequency must be positive" << std::endl;
ABORT(-1);
}
} else {
if ((callsign=="")||(locator=="")||(tx_power=="")||(center_freq_set.size()==0)) {
std::cerr << "Error: must specify callsign, locator, dBm, and at least one frequency" << std::endl;
std::cerr << "Try: wspr --help" << std::endl;
ABORT(-1);
}
}
// Print a summary of the parsed options
if (mode==WSPR) {
std::cout << "WSPR packet contents:" << std::endl;
std::cout << " Callsign: " << callsign << std::endl;
std::cout << " Locator: " << locator << std::endl;
std::cout << " Power: " << tx_power << " dBm" << std::endl;
std::cout << "Requested TX frequencies:" << std::endl;
std::stringstream temp;
for (unsigned int t=0;t<center_freq_set.size();t++) {
temp << std::setprecision(6) << std::fixed;
temp << " " << center_freq_set[t]/1e6 << " MHz" << std::endl;
}
std::cout << temp.str();
temp.str("");
if (self_cal) {
temp << " NTP will be used to periodically calibrate the transmission frequency" << std::endl;
} else if (ppm) {
temp << " PPM value to be used for all transmissions: " << ppm << std::endl;
}
if (terminate>0) {
temp << " TX will stop after " << terminate << " transmissions." << std::endl;
} else if (repeat) {
temp << " Transmissions will continue forever until stopped with CTRL-C" << std::endl;
}
if (random_offset) {
temp << " A small random frequency offset will be added to all transmissions" << std::endl;
}
if (temp.str().length()) {
std::cout << "Extra options:" << std::endl;
std::cout << temp.str();
}
std::cout << std::endl;
} else {
std::stringstream temp;
temp << std::setprecision(6) << std::fixed << "A test tone will be generated at frequency " << test_tone/1e6 << " MHz" << std::endl;
std::cout << temp.str();
if (self_cal) {
std::cout << "NTP will be used to calibrate the tone frequency" << std::endl;
} else if (ppm) {
std::cout << "PPM value to be used to generate the tone: " << ppm << std::endl;
}
std::cout << std::endl;
}
}
// Call ntp_adjtime() to obtain the latest calibration coefficient.
void update_ppm(
double & ppm
) {
struct timex ntx;
int status;
double ppm_new;
ntx.modes = 0; /* only read */
status = ntp_adjtime(&ntx);
if (status != TIME_OK) {
//cerr << "Error: clock not synchronized" << std::endl;
//return;
}
ppm_new = (double)ntx.freq/(double)(1 << 16); /* frequency scale */
if (abs(ppm_new)>200) {
std::cerr << "Warning: absolute ppm value is greater than 200 and is being ignored!" << std::endl;
} else {
if (ppm!=ppm_new) {
std::cout << " Obtained new ppm value: " << ppm_new << std::endl;
}
ppm=ppm_new;
}
}
/* Return 1 if the difference is negative, otherwise 0. */
// From StackOverflow:
// http://stackoverflow.com/questions/1468596/c-programming-calculate-elapsed-time-in-milliseconds-unix
int timeval_subtract(struct timeval *result, struct timeval *t2, struct timeval *t1) {
long int diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec + 1000000 * t1->tv_sec);
result->tv_sec = diff / 1000000;
result->tv_usec = diff % 1000000;
return (diff<0);
}
void timeval_print(struct timeval *tv) {
char buffer[30];
time_t curtime;
//printf("%ld.%06ld", tv->tv_sec, tv->tv_usec);
curtime = tv->tv_sec;
//strftime(buffer, 30, "%m-%d-%Y %T", localtime(&curtime));
strftime(buffer, 30, "UTC %Y-%m-%d %T", gmtime(&curtime));
printf("%s.%03ld", buffer, (tv->tv_usec+500)/1000);
}
// Called when exiting or when a signal is received.
void cleanup() {
if(clk!=NULL) {delete clk;clk=NULL;}
if(ngfmtest!=NULL) {delete ngfmtest;ngfmtest=NULL;}
}
// Called when a signal is received. Automatically calls cleanup().
void cleanupAndExit(int sig) {
std::cerr << "Exiting with error; caught signal: " << sig << std::endl;
cleanup();
ABORT(-1);
}
int main(const int argc, char * const argv[]) {
//catch all signals (like ctrl+c, ctrl+z, ...) to ensure DMA is disabled
for (int i = 0; i < 64; i++) {
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = cleanupAndExit;
sigaction(i, &sa, NULL);
}
atexit(cleanup);
// Initialize the RNG
srand(time(NULL));
// Parse arguments
std::string callsign;
std::string locator;
std::string tx_power;
std::vector <double> center_freq_set;
double ppm;
bool self_cal;
bool repeat;
bool random_offset;
double test_tone;
bool no_delay;
mode_type mode;
int terminate;
parse_commandline(
argc,
argv,
callsign,
locator,
tx_power,
center_freq_set,
ppm,
self_cal,
repeat,
random_offset,
test_tone,
no_delay,
mode,
terminate
);
int nbands=center_freq_set.size();
if (mode==TONE) {
if(clk==NULL)
clk=new clkgpio;
clk->SetAdvancedPllMode(true);
// Test tone mode...
double wspr_symtime = WSPR_SYMTIME;
double tone_spacing=1.0/wspr_symtime;
std::stringstream temp;
temp << std::setprecision(6) << std::fixed << "Transmitting test tone on frequency " << test_tone/1.0e6 << " MHz" << std::endl;
std::cout << temp.str();
std::cout << "Press CTRL-C to exit!" << std::endl;
txon();
int bufPtr=0;
// Set to non-zero value to ensure setupDMATab is called at least once.
double ppm_prev=123456;
double center_freq_actual;
//SetTone
clk->SetCenterFrequency(test_tone,100);
clk->enableclk(4);
clk->SetFrequency(000);
while(true) usleep(1000000);
// Should never get here...
} else {
// WSPR mode
// Create WSPR symbols
unsigned char symbols[162];
wspr(callsign.c_str(), locator.c_str(), tx_power.c_str(), symbols);
/*
printf("WSPR codeblock: ");
for (int i = 0; i < (signed)(sizeof(symbols)/sizeof(*symbols)); i++) {
if (i) {
std::cout << ",";
}
printf("%d", symbols[i]);
}
printf("\n");
*/
std::cout << "Ready to transmit (setup complete)..." << std::endl;
int band=0;
int n_tx=0;
for(;;) {
// Calculate WSPR parameters for this transmission
double center_freq_desired;
center_freq_desired = center_freq_set[band];
bool wspr15 =
(center_freq_desired > 137600 && center_freq_desired < 137625) || \
(center_freq_desired > 475800 && center_freq_desired < 475825) || \
(center_freq_desired > 1838200 && center_freq_desired < 1838225);
double wspr_symtime = (wspr15) ? 8.0 * WSPR_SYMTIME : WSPR_SYMTIME;
double tone_spacing=1.0/wspr_symtime;
// Add random offset
if ((center_freq_desired!=0)&&random_offset) {
center_freq_desired+=(2.0*rand()/((double)RAND_MAX+1.0)-1.0)*(wspr15?WSPR15_RAND_OFFSET:WSPR_RAND_OFFSET);
}
// Status message before transmission
std::stringstream temp;
temp << std::setprecision(6) << std::fixed;
temp << "Desired center frequency for " << (wspr15?"WSPR-15":"WSPR") << " transmission: "<< center_freq_desired/1e6 << " MHz" << std::endl;
std::cout << temp.str();
// Wait for WSPR transmission window to arrive.
if (no_delay) {
std::cout << " Transmitting immediately (not waiting for WSPR window)" << std::endl;
} else {
std::cout << " Waiting for next WSPR transmission window..." << std::endl;
wait_every((wspr15) ? 15 : 2);
}
// Update crystal calibration information
if (self_cal) {
update_ppm(ppm);
}
// Create the DMA table for this center frequency
std::vector <double> dma_table_freq;
double center_freq_actual;
if (center_freq_desired) {
center_freq_actual=center_freq_desired;
} else {
center_freq_actual=center_freq_desired;
}
// Send the message!
//cout << "TX started!" << std::endl;
if (center_freq_actual){
// Print a status message right before transmission begins.
struct timeval tvBegin, tvEnd, tvDiff;
gettimeofday(&tvBegin, NULL);
std::cout << " TX started at: ";
timeval_print(&tvBegin);
std::cout << std::endl;
struct timeval sym_start;
struct timeval diff;
int bufPtr=0;
int SR=100*1/wspr_symtime;
int FifoSize=1000;
if(ngfmtest==NULL)
ngfmtest=new ngfmdmasync(center_freq_actual,SR,14,FifoSize);
double FreqResolution=ngfmtest->GetFrequencyResolution();
double RealFreq=ngfmtest->GetRealFrequency(0);
if(FreqResolution>tone_spacing)
{
fprintf(stderr,"Freq resolution=%f - Tone spacing =%f Erreur tuning=%f\n",FreqResolution,tone_spacing,RealFreq);
}
for (int i = 0; i < 162; i++)
{
double tone_freq=-1.5*tone_spacing+symbols[i]*tone_spacing-RealFreq;
int Nbtx=0;
int Frac=ngfmtest->GetMasterFrac(0);
int IntFreq=floor(tone_freq/FreqResolution);
double ToneFreqInf=tone_freq-IntFreq;
int Step=ToneFreqInf*100.0/FreqResolution;
while(Nbtx<100)
{
usleep(100);
int Available=ngfmtest->GetBufferAvailable();
if(Available>FifoSize/2)
{
int Index=ngfmtest->GetUserMemIndex();
if(Available>100-Nbtx) Available=100-Nbtx;
//printf("GetIndex=%d\n",Index);
for(int j=0;j<Available;j++)
{
//ngfmtest.SetFrequencySample(Index,((i%10000)>5000)?1000:0);
double pwmtone=(Nbtx>abs(Step))?(IntFreq*FreqResolution):((IntFreq+1)*FreqResolution);
//fprintf(stderr,"Frac %d IntFreq %d step %d tone= %f pwm %f\n",Frac,IntFreq,Step,tone_freq,pwmtone);
ngfmtest->SetFrequencySample(Index+j,pwmtone);
//ngfmtest->SetFrequencySample(Index+j,tone_freq);
Nbtx++;
}
}
}
}
n_tx++;
// Turn transmitter off
ngfmtest->stop();
// End timestamp
gettimeofday(&tvEnd, NULL);
std::cout << " TX ended at: ";
timeval_print(&tvEnd);
timeval_subtract(&tvDiff, &tvEnd, &tvBegin);
printf(" (%ld.%03ld s)\n", tvDiff.tv_sec, (tvDiff.tv_usec+500)/1000);
} else {
std::cout << " Skipping transmission" << std::endl;
usleep(1000000);
}
// Advance to next band
band=(band+1)%nbands;
if ((band==0)&&!repeat) {
break;
}
if ((terminate>0)&&(n_tx>=terminate)) {
break;
}
}
}
return 0;
}