F5OEO-PiFmRds/src/fm_mpx.c

251 wiersze
7.5 KiB
C

/*
PiFmRds - FM/RDS transmitter for the Raspberry Pi
Copyright (C) 2014 Christophe Jacquet, F8FTK
See https://github.com/ChristopheJacquet/PiFmRds
rds_wav.c is a test program that writes a RDS baseband signal to a WAV
file. It requires libsndfile.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
fm_mpx.c: generates an FM multiplex signal containing RDS plus possibly
monaural or stereo audio.
*/
#include <sndfile.h>
#include <stdlib.h>
#include <strings.h>
#include <math.h>
#include "rds.h"
#define PI 3.141592654
#define FIR_HALF_SIZE 30
#define FIR_SIZE (2*FIR_HALF_SIZE-1)
size_t length;
// coefficients of the low-pass FIR filter
float low_pass_fir[FIR_HALF_SIZE];
float carrier_38[] = {0.0, 0.8660254037844386, 0.8660254037844388, 1.2246467991473532e-16, -0.8660254037844384, -0.8660254037844386};
float carrier_19[] = {0.0, 0.5, 0.8660254037844386, 1.0, 0.8660254037844388, 0.5, 1.2246467991473532e-16, -0.5, -0.8660254037844384, -1.0, -0.8660254037844386, -0.5};
int phase_38 = 0;
int phase_19 = 0;
float downsample_factor;
float *audio_buffer;
int audio_index = 0;
int audio_len = 0;
float audio_pos;
float fir_buffer_mono[FIR_SIZE] = {0};
float fir_buffer_stereo[FIR_SIZE] = {0};
int fir_index = 0;
int channels;
SNDFILE *inf;
float *alloc_empty_buffer(size_t length) {
float *p = malloc(length * sizeof(float));
if(p == NULL) return NULL;
bzero(p, length * sizeof(float));
return p;
}
int fm_mpx_open(char *filename, size_t len) {
length = len;
if(filename != NULL) {
// Open the input file
SF_INFO sfinfo;
if(! (inf = sf_open(filename, SFM_READ, &sfinfo))) {
fprintf(stderr, "Error: could not open input file %s.\n", filename) ;
return -1;
}
int in_samplerate = sfinfo.samplerate;
downsample_factor = 228000. / in_samplerate;
printf("Input: %d Hz, upsampling factor: %.2f\n", in_samplerate, downsample_factor);
channels = sfinfo.channels;
if(channels > 1) {
printf("%d channels, generating stereo multiplex.\n", channels);
} else {
printf("1 channel, monophonic operation.\n");
}
// Create the low-pass FIR filter
float cutoff_freq = 15000 * .8;
if(in_samplerate/2 < cutoff_freq) cutoff_freq = in_samplerate/2 * .8;
low_pass_fir[FIR_HALF_SIZE-1] = 2 * cutoff_freq / 228000 /2;
// Here we divide this coefficient by two because it will be counted twice
// when applying the filter
// Only store half of the filter since it is symmetric
for(int i=1; i<FIR_HALF_SIZE; i++) {
low_pass_fir[FIR_HALF_SIZE-1-i] =
sin(2 * PI * cutoff_freq * i / 228000) / (PI * i) // sinc
* (.54 - .46 * cos(2*PI * (i+FIR_HALF_SIZE) / (2*FIR_HALF_SIZE)));
// Hamming window
}
printf("Created low-pass FIR filter for audio channels, with cutoff at %.1f Hz\n", cutoff_freq);
/*
for(int i=0; i<FIR_HALF_SIZE; i++) {
printf("%.5f ", low_pass_fir[i]);
}
printf("\n");
*/
audio_pos = downsample_factor;
audio_buffer = alloc_empty_buffer(length * channels);
if(audio_buffer == NULL) return -1;
} // end if(filename != NULL)
else {
inf = NULL;
// inf == NULL indicates that there is no audio
}
return 0;
}
// samples provided by this function are in 0..10: they need to be divided by
// 10 after.
int fm_mpx_get_samples(float *mpx_buffer) {
get_rds_samples(mpx_buffer, length);
if(inf == NULL) return 0; // if there is no audio, stop here
for(int i=0; i<length; i++) {
if(audio_pos >= downsample_factor) {
audio_pos -= downsample_factor;
if(audio_len == 0) {
for(int j=0; j<2; j++) { // one retry
audio_len = sf_read_float(inf, audio_buffer, length);
if (audio_len < 0) {
fprintf(stderr, "Error reading audio\n");
return -1;
}
if(audio_len == 0) {
sf_seek(inf, 0, SEEK_SET);
} else {
break;
}
}
audio_index = 0;
} else {
audio_index += channels;
audio_len -= channels;
}
}
// First store the current sample(s) into the FIR filter's ring buffer
if(channels == 0) {
fir_buffer_mono[fir_index] = audio_buffer[audio_index];
} else {
// In stereo operation, generate sum and difference signals
fir_buffer_mono[fir_index] =
audio_buffer[audio_index] + audio_buffer[audio_index+1];
fir_buffer_stereo[fir_index] =
audio_buffer[audio_index] - audio_buffer[audio_index+1];
}
fir_index++;
if(fir_index >= FIR_SIZE) fir_index = 0;
// Now apply the FIR low-pass filter
/* As the FIR filter is symmetric, we do not multiply all
the coefficients independently, but two-by-two, thus reducing
the total number of multiplications by a factor of two
*/
float out_mono = 0;
float out_stereo = 0;
int ifbi = fir_index; // ifbi = increasing FIR Buffer Index
int dfbi = fir_index; // dfbi = decreasing FIR Buffer Index
for(int fi=0; fi<FIR_HALF_SIZE; fi++) { // fi = Filter Index
dfbi--;
if(dfbi < 0) dfbi = FIR_SIZE-1;
out_mono +=
low_pass_fir[fi] *
(fir_buffer_mono[ifbi] + fir_buffer_mono[dfbi]);
if(channels > 1) {
out_stereo +=
low_pass_fir[fi] *
(fir_buffer_stereo[ifbi] + fir_buffer_stereo[dfbi]);
}
ifbi++;
if(ifbi >= FIR_SIZE) ifbi = 0;
}
// End of FIR filter
mpx_buffer[i] =
mpx_buffer[i] + // RDS data samples are currently in mpx_buffer
4.05*out_mono; // Unmodulated monophonic (or stereo-sum) signal
if(channels>1) {
mpx_buffer[i] +=
4.05 * carrier_38[phase_38] * out_stereo + // Stereo difference signal
.09*carrier_19[phase_19]; // Stereo pilot tone
phase_19++;
phase_38++;
if(phase_19 >= 12) phase_19 = 0;
if(phase_38 >= 6) phase_38 = 0;
}
audio_pos++;
}
return 0;
}
int fm_mpx_close() {
if(sf_close(inf) ) {
fprintf(stderr, "Error closing audio file");
}
free(audio_buffer);
return 0;
}